
Building a Firmware for 

Virtual Machines using Rust

Robert Bradford

Intel



Project: 
Rust Hypervisor Firmware



Motivation



• New language with a focus on correctness and performance

• Compiled to native code offering performance similar to C

• Memory management without garbage collection

• Designed for systems programming

Why Rust?

4



A new hypervisor deserves a new firmware!

Cloud Hypervisor objectives:

• High performance type-2 VMM using KVM

• Minimal hardware emulation → small attack surface

• Suitable for use with Kata Containers

• Suitable as a “pet” virtual machine monitor (with persistent 

storage, networking and a generic operating system)

Why A New Hypervisor Firmware?

5



• OVMF is a TianoCore based UEFI firmware – used with NEMU 

and QEMU

• Experience of OVMF from porting NEMU “virt” machine type:

• “Legacy” hardware expectations

• Full featured → complex

• Linux cloud workloads main focus

• Want compatibility with Linux loader

Why Not OVMF?

6



• All Rust based hypervisors have an ELF loader for the Linux 

kernel

• Used to load uncompressed vmlinux kernel

• Boots in long mode with identity mapping

• LDT & GDT setup

• Provides an E820 table with the memory layout

Linux Loader Compatibility

7



• If can already load a Linux kernel with the hypervisor…why this 

project?

• Direct loading is perfect for: container style workloads (e.g. Kata 

Containers or Firecracker) or full control of the stack (e.g. Crostini 

on Chrome OS)

• For wider cloud use cases: End-user need to control their own 

boot (e.g. to update kernel)

Why A Firmware Then?

8



Architecture



• Two modes of operation:

• FreeDesktop loader

• Used for ClearLinux

• EFI loading

• Used for Debian and Ubuntu

Architecture

10



• Virtio transport: MMIO and PCI

• Block device driver (virtio-blk)

• GPT partition parsing

• FAT filesystem implementation

• bzImage loader

• FreeDesktop bootloader specification 

parser

FreeDesktop Loading

11

FAT filesystem

Virtio Block

bzImage 

loader

Bootloader 

parser

Firmware

Hypervisor



• Virtio transport: MMIO and PCI

• Block device driver (virtio-blk)

• GPT partition parsing

• FAT filesystem implementation

• PE32+ loader

• "EFI Compatibility" API

EFI Loading

12

FAT filesystem

Virtio Block

EFI Compatibility API

Firmware

Hypervisor



• Loaded by hypervisor at 0x100000 (1MiB)

• Establishes wider identity mapping

• Parses kernel command line for MMIO block device details

• Reads E820 table from zero page

• Probes block device and searches for filesystem

Basic setup

13



• Parses FreeDesktop bootloader specification configuration

• Loads bzImage via 64-bit bootloader protocol at 0x200000

(2 MiB)

• Loads initrd and populates command line

• Updates zero page with new details per spec 

(including revised E820)

• Jumps into kernel at 64 bit entry

• No more interaction with firmware

FreeDesktop loader

14



• PE32+ loader

• “EFI compatibility” layer

• Uses “r-efi” crate – definition of common EFI structures in Rust

• EFI memory allocator

• Filesystem + block abstraction

• Able to boot Linux kernel built with CONFIG_EFI_STUB

• Boots shim + GRUB as used by Ubuntu image

• Not aiming for full EFI functionality

EFI image loader

15



Evaluation



Memory safety - Helps avoid many classes of security issues

But … firmware needs fine grained control of memory

Ergonomic - great editor support, unit testing in the box, powerful build system

But … custom target for linker script, need to use “core”, “nightly” 
compiler

Flexible - have control over some low-level details

But … firmware patterns pushes Rust language to its limits

High performance - almost native performance

Community - wide community developing firmware, operating systems and 

other low-level components in Rust

17

Evaluation of Rust (for Firmware)



Conclusion



• Experiment. Not for production!

• Currently developed and tested against Firecracker and Cloud 

Hypervisor

• Apache 2.0 licensed

• On GitHub: https://github.com/intel/rust-hypervisor-firmware

• External contributions welcome!

Development Status

19



Q&A



Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a 
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in 

trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to 

change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published 
specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or 
by visiting www.intel.com/design/literature.htm

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others

© Intel Corporation.

21

http://www.intel.com/design/literature.htm

