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value = *ptr;
x = value + 1;
y = x * 2;
...

Fault Speculative Execution

Read from *ptr retired.

1) Abort speculation (Drop changes to x & y)
2) Raise #PF on faulting instruction



● Faults are raised only when faulting instruction retire
● Until then, the CPU speculatively execute following instructions out-of-order
● Which can compute on unauthorized results of the faulting instruction
● Should be OK as speculation aborts when faulting instruction retire
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● Faults are raised only when faulting instruction retire
● Until then, the CPU speculatively execute following instructions out-of-order
● Which can compute on unauthorized results of the faulting instruction
● Should be OK as speculation aborts when faulting instruction retire
● However, speculation abort don’t revert various micro-arch effects…
● Which can be measured to deduce unauthorized result

Fault Speculative Execution Vulnerability
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Note:
probe_array[2] remains hot in cache!

Abort doesn’t revert micro-arch cache state



Fault Speculative Execution Vulnerability Exploit
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⇒ Fastest element is hot in cache
⇒ Deduce that secret==2
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L1TF (L1 Termination Fault)
secret = *ptr;
dummy = probe_array[secret];

What if ptr mapped non-present in PTE?

PFN Flags (P=0)

But until then…
Speculate value based on L1D$[PFN] 😱

Even worse: Doesn’t translate PFN via EPT! 😱😱

*ptr PTE:
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L1TF: Guest→Host Attack
● Guest kernel completely controls guest page-tables PTEs
● ⇒ Guest can easily trigger L1TF to leak any host data present in L1D cache

● Mitigation: CPU microcode mechanism to explicitly flush L1D cache
● VMM modified to flush L1D cache before every entry to guest

● Alternative mitigation: Use shadow MMU
○ Allows VMM to completely control PFNs used in non-present PTEs when guest is running
○ VMM will set invalid PFN in non-present PTEs (e.g. MSB bit set)



L1TF: Hyperthreading
● But flushing L1D cache (L1D$) on VMEntry is insufficient!
● L1D$ is shared between hyperthreads on same CPU core
● vCPU in guest can leak L1D$ data populated by sibling hyperthread

* Sibling hyperthread runs vCPU thread of another VM
* Sibling hyperthread runs vCPU thread currently running in host (#VMExit)

Source: 
https://techcommunity.
microsoft.com/t5/Virtual
ization/Hyper-V-HyperC
lear-Mitigation-for-L1-T
erminal-Fault/ba-p/3824
29
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L1TF: Disable Hyperthreading?
● Disabling hyperthreading is a valid mitigation…
● But it doesn’t fit well all production use-cases
● For example, a public cloud will lose half of it’s Compute fleet capacity

○ Leads to losing $$$
○ Renders this mitigation problematic for cloud usage



Community Mitigation Mechanisms



● Multiple mitigation mechanisms were suggested upstream
● None have yet been integrated into upstream Linux

Community Mitigation Mechanisms



Core-Scheduling
● A new scheduler policy
● Allows tagging tasks which can run as sibling hyperthreads
● Can be used to guarantee sibling hyperthreads run vCPUs of same VM
● Patches submitted upstream (Peter Zijlstra)



Remove sensitive data from KVM VA space
● Hyperthread in guest can still leak from sibling running #VMExit handler

Leakable!
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Remove sensitive data from KVM VA space
● Hyperthread in guest can still leak from sibling running #VMExit handler
● Any executed cache-load gadget sufficient to fill L1D$

○ E.g. #VMExit handler executes “val = host_array[guest_controlled_index];”
○ Even if executed speculatively (May allow to read out-of-bounds)

● ⇒ Introduce mechanisms to remove sensitive data from KVM VA space
○ Assume data not mapped in VA space cannot be fetched into L1D$

● KVM is a Type-2 hypervisor, thus this includes all host kernel VA space

Leakable!
But not sensitive!



KVM vCPU task VA Space
Memslot 1

Memslot 2

User/Kernel boundary

direct-map}
KVM vCPU structs

Other guest 
sensitive data!



● Idea: Remove physical pages used only by userspace from “direct-map”
○ Patches submitted upstream (Juerg Haefliger)

● Originally aimed to mitigate SMAP bypass using “direct-map”
● As a side-effect, removes guest memory from “direct-map” VA region

XPFO (eXclusive Page Frame Ownership)



● Idea: Remove physical pages used only by userspace from “direct-map”
○ Patches submitted upstream (Juerg Haefliger)

● Originally aimed to mitigate SMAP bypass using “direct-map”
● As a side-effect, removes guest memory from “direct-map” VA region
● Performance hit currently too high: ~5%

○ Cannot map “direct-map” with 1GB PTEs
○ Frequent allocation/free of user-mode pages result in frequent TLB invalidations

XPFO (eXclusive Page Frame Ownership)



Process local kernel VA region
● Idea: Portion of kernel VA space will be mapped differently between tasks

○ Usually all tasks maps kernel VA space exactly the same
○ Patches submitted upstream (Marius Hillenbrand & Julian Stecklina from AWS)

● Declare a single PGD entry that maps differently between tasks



Process local kernel VA region
● Idea: Portion of kernel VA space will be mapped differently between tasks

○ Usually all tasks maps kernel VA space exactly the same
○ Patches submitted upstream (Marius Hillenbrand & Julian Stecklina from AWS)

● Declare a single PGD entry that maps differently between tasks
● KVM will use this VA region to put per-VM sensitive data
● ⇒ Unmapping this data from KVM VA space of vCPU threads of other VMs

○ KVM per-VM & per-vCPU structures
○ Temp map of guest RAM during emulation (e.g. VMPTRLD, MMIO)
○ kmap of guest RAM by vhost kernel backend
○ Note: Physical pages holding data could still be mapped in direct-map...



KVM ASI
(Address Space Isolation)



● Previous mitigations remove data from KVM VA space by blacklist
○ i.e. Explicitly filtered-out everything we spotted as “sensitive”
○ Difficult to identify all sensitive data

● A more secure approach is to build KVM VA space by whitelist
○ Explicitly select non-sensitive & per-vCPU data to be mapped in KVM VA space
○ Decouple KVM VA space from host VA space
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● Previous mitigations remove data from KVM VA space by blacklist
○ i.e. Explicitly filtered-out everything we spotted as “sensitive”
○ Difficult to identify all sensitive data

● A more secure approach is to build KVM VA space by whitelist
○ Explicitly select non-sensitive & per-vCPU data to be mapped in KVM VA space
○ Decouple KVM VA space from host VA space

● ⇒ KVM ASI builds a separate VA space used by KVM #VMExit handlers
● Initially introduced in KVM Forum 2018 BoF session by Liran Alon

○ Inspired by Microsoft Hyper-V HyperClear L1TF mitigation

● Implementation mostly done by Alexandre Chartre

KVM ASI (Address Space Isolation)



KVM ASI
● Create VA space that maps only per-VM info, KVM and core kernel mappings

○ Core kernel mappings == kernel text, IDT/GDT, current stack, enter/exit IRQ and etc.

● Use VA space when entering guest
● Majority of #VMExits are fully handled in this isolated VA space
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● Create VA space that maps only per-VM info, KVM and core kernel mappings

○ Core kernel mappings == kernel text, IDT/GDT, current stack, enter/exit IRQ and etc.

● Use VA space when entering guest
● Majority of #VMExits are fully handled in this isolated VA space
● When #VMExit requires data outside of isolated VA space:

Kick sibling hyperthreads, switch to full VA space & sync enter to guest
○ Can be done by switching task core-scheduler security-domain (“core-cookie”)
○ Need to exit isolated VA space to handle async events (e.g. interrupts) 

● No need to flush L1D$ on VMEntry if haven’t left isolated VA space



KVM Isolated VA Space Content
● Core kernel mappings

○ Kernel text, GDT, current stack
○ Minimum mappings to enter/exit ASI

● Additional kernel mappings
○ Stack canary, CPU offsets, current task, rcu data, hw_events

● KVM specific mappings
○ KVM modules, srcu, current_vcpu
○ per-vcpu (or per-VM) data: kvm_vmx, vmx, vcpu, vmcs
○ KVM memslots, buses



Kernel ASI
● KPTI uses isolated VA space when running user-mode code
● KPTI & KVM ASI is very similar:

* Explicit enter to isolated VA space
* Explicit exit from isolated VA space
* Implicit exit isolated VA space on async event (e.g. Interrupt)

● ⇒ Should we consider a unified framework for creating Kernel ASI?



Kernel ASI: Implementation
● Mechanism to switch page table
● Mechanism for explicit enter/exit ASI transition

○ E.g. Syscall return for KPTI, VMEntry for KVM

● Mechanism for implicit enter/exit ASI transition to handle async events
○ Interrupt, Exception, NMI, MCE and context-switch
○ Includes mechanism to create page table with min mappings to handle these async events

● Extend alloc_page() & kmalloc() with context awareness
○ Drop per-context pages from “direct-map”



KVM ASI: Preliminary Performance Data
● Very preliminary and limited performance data

○ Data collected during VM boot
○ No data with VM running workload (system currently hangs under load)

● vcpu_run() loop
○ ASI is entered in vcpu_enter_guest() (when needed)
○ >97% of loop iterations are done without exiting ASI
○ Only 75% for nested VM

● Most common #VMExits are almost always processed without exiting ASI
○ Kernel VMExit processing (kvm_vmx_exit_handlers[]() calls)
○ >99% of CR_ACCESS, CPUID, IO_INSTRUCTION
○ Represent >98% of VMExits

● Probably can be further improved by mapping additional data to ASI



Kernel VMExit ASI Processing



Kernel ASI: Current Status
● Patch series v1 & v2 are submitted upstream

○ v1 (KVM ASI): https://lkml.org/lkml/2019/5/13/515
○ v2 (Kernel ASI): https://patchwork.kernel.org/project/kvm/list/?series=144811

● Doesn’t yet kick sibling on ASI exit
○ Need to re-evaluate performance degradation after integration

● Still have unresolved issues
○ Stability (hang under load)
○ Identify all that is required to be mapped in isolated VA space
○ Prefer to just decouple KVM VA space from host and iterate on removed mappings?

■ Not whitelist. However, still decoupled which allows modifications without affecting host.
■ E.g. Remove direct-map from KVM VA space

https://lkml.org/lkml/2019/5/13/515
https://patchwork.kernel.org/project/kvm/list/?series=144811


ASI & Nested-Virtualization
● ASI is insufficient for nested virtualization case
● L1 vCPU executes different security domains at different times

○ L1 hypervisor will be context switching between L1 hypervisor and L2 guests

● However, L0 hypervisor maintains single VA space for the L1 VM
○ Which contains data for both L1 guest and L2 guests



Hyper-V HyperClear: Sensitive Data Scrubbing
● L0 Hyper-V avoids caching any sensitive guest state in its data structures
● If L0 must read guest data into its private memory, clear it before exiting L0

○ E.g. Read vCPU registers on IOPort access emulation

● Ensures sensitive L1 memory not resident in cache when entering L2 context
● Note: L1D cache is flushed when switching between L1 and L2

Source: 
https://techcommunity.
microsoft.com/t5/Virtual
ization/Hyper-V-HyperC
lear-Mitigation-for-L1-T
erminal-Fault/ba-p/3824
29
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Summary
● L1TF SMT attack scenarios:

1) Sibling running other VM vCPU ⇐ Mitigated by Core-Scheduler
2) Sibling running #VMExit handler ⇐ Mitigated by reducing KVM VA space

● Reduce KVM VA space techniques:
XPFO, Process-local kernel VA region & Kernel ASI

○ Kernel ASI doesn’t require to flush L1D$ on every VMEntry
● Kernel ASI Decouples ASI VA space from host VA space
● Kernel ASI is a whitelist approach
● Kernel ASI only known method to mitigate MDS user→kernel SMT attack



Future Mitigations



mem=X
● mem=X is a boot option to limit amount of host DRAM used by kernel
● What if we will allocate physical pages for guest sensitive data from non-X?



mem=X: Security Analysis
● All guest sensitive data are not mapped in “direct-map”

○ Kernel does not map non-X physical pages in “direct-map”

● Map non-X physical pages in EPT & Process-local PTEs only
○ Process-local PTEs == PTEs mapping userspace & “process-local kernel VA region”

● Can also be used to hide selected host sensitive data from guests

Stored in non-X physical page
⇒ Not leakable by VMs



mem=X: Performance Advantages
● Avoid wasting host DRAM on “struct page” for memory dedicated to guests

○ E.g. A host with 768GB RAM use 12GB (=768GB/4K * 64bytes) of it for “struct page”

● Improves guest performance
○ E.g. Guest memory always mapped as 1GB pages

● Prevent host from using DRAM dedicated to guest for host cache
○ E.g. pagecache, inode cache, slab cache

● Allows disable speculative execution mitigations that hurt performance
○ L1D$/MDS flushes, IBRS/retpoline, KPTI



mem=X: Issues
● Kernel cannot perform zero-copy / scatter-gather without “struct page”

○ Such as vhost kernel backend
○ vfio-pci devices work as usual
○ Upcoming patches by Joao Martins (Oracle)

● Non-trivial to move all sensitive info to non-X & local-process kernel VA region
○ E.g. vCPU thread stack pages



Conclusion



Conclusion
● No perfect public KVM solution yet for L1TF/MDS SMT attack vector

○ Administrators should be provided with options that best suit their needs

● Kernel ASI useful as generic mitigation against arbitrary read primitive
● ASI & mem=X de-facto modify KVM environment into a Type-1 hypervisor

○ i.e. Decouple KVM execution environment from rest of host (dom0)
○ Easier to modify KVM execution environment than entire host execution environment
○ Questions arise on the security posture of Type-2 hypervisors in general

● KVM community should constantly review other hypervisors to gain insights
○ E.g. Microsoft Hyper-V HyperClear



Questions?
Thank you!


