
Changpeng Liu, Intel

Xiaodong Liu, Intel

Notices & Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information
visit http://www.intel.com/benchmarks .

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost
savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate.

© 2019 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

http://www.intel.com/
http://www.intel.com/

3

Agenda

 Introduction to SPDK Vhost-fs

 SPDK Vhost-fs with Kata Container

 Future plans

4

5

Application Acceleration (Local Storage)

Implementation of RocksDB “env”

abstraction

 Drop-in storage engine replacement

 Accelerate application access to

local storage

 Benefits: removes latency and

improves I/O consistency

What if running RocksDB in a virtual

environment? Is there any protocol can

transfer file APIs between VM and Host

?

Database

MySQL

MyRocks Storage Engine

RocksDB

SPDK RocksDB Env

NVMe Driver

Blobstore

BlobFS

NVMe SSD

spdk_file_read/write

Read/Write

virtio

• Paravirtualized driver specification

• Common mechanisms and layouts for

device discovery, I/O queues, etc.

• virtio device types include:

- virtio-net

- virtio-blk

- virtio-scsi

- virtio-9p

- virtio-fs

Hypervisor (i.e. QEMU/KVM)

Guest VM

(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

virtio back-end drivers

device emulation

virtqueuevirtqueuevirtqueue

6

8

• Using 9p as the file transport protocol • Format file system with block device

Optional solutions using file APIs in VM

9p backend(kernel)

QEMU

Guest VM

virtio-9p-pci

virtio-9p.ko

9p

9p-local

EXT4/XFS

kernel

userspace

Application

BLOCK

NVMe SSD

SPDK(userspace)

QEMU

Guest VM

vhost-user-blk-pci

virtio-blk.ko

EXT4/XFS

Block

vhost-blk target

Bdev/NVMe

kernel

userspace

Application

NVMe SSD

9

• FUSE (Filesystem in Userspace) is

an interface for userspace programs

to export a filesystem to the Linux

kernel.

• The FUSE project consists of two

components:

- fuse kernel module and the libfuse

userspace library.

- libfuse provides the reference

implementation for communicating with the

FUSE kernel module.

Introduction to FUSE

Example usage of FUSE(passthrough)

Host

VFS

FUSE Kernel Driver

kernel

userspace

Application

libfuse

FUSE Daemon

VFS

10

Virtio-fs
 virtio-fs is a shared file system that lets virtual machines access a directory

tree on the host. Unlike existing approaches, it is designed to offer local file

system semantics and performance. This is especially useful for lightweight

VMs and container workloads, where shared volumes are a requirement.

 virtio-fs was started at Red Hat and is being developed in the Linux, QEMU,

FUSE, and Kata Containers communities that are affected by code

changes.

 virtio-fs uses FUSE as the foundation. A VIRTIO device carries FUSE

messages and provides extensions for advanced features not available in

traditional FUSE.

 DAX support via virtio-pci BAR from host huge memory.

11

• Eliminate userspace/kernel space

context switch by providing a user

space file system

• IO thread model

- SPDK uses one poller to poll all the

virtqueues while virtiofsd uses one thread

per queue

• Page cache in Host can be shared

for virtiofsd

• Easy to add new features in

userspace

SPDK Vhost-fs Target vs. Virtiofsd

SPDK(Userspace)
QEMU

Guest VM

vhost-user-fs-pci

virtio-fs.ko virtqueue

FUSE

FS-DAX

BAR 2 Memory
Region

vhost-fs target

Blobfs

Blobstore

Bdev/NVMe
virtqueue

FUSE req/rsp

vhost library

kernel

userspace

Application

virtiofsd(passthrough)

virtiofsd

passthrough

EXT4/XFS

BLOCK/NVMe

fuse_low

kernel

userspace

NVMe SSD

NVMe SSD

SPDK Blobfs APIs vs. FUSE

• Open, read, write, close,

delete, rename, sync interface

to provide POSIX similar APIs

• Asynchronous APIs provided

FUSE Command Blobfs API

Lookup spdk_fs_iter_first,

spdk_fs_iter_next

Getattr spdk_fs_file_stat_async

Open spdk_fs_open_file_async

Release spdk_file_close_async

Create spdk_fs_create_file_async

Delete spdk_fs_delete_file_async

Read spdk_file_readv_async

Write spdk_file_writev_async

Rename spdk_fs_rename_file_async

Flush spdk_file_sync_async

Operation Mapping of FUSE in Virtqueue

• General FUSE command has 2

parts: request and response.

• General FUSE request is

consisted with IN header and

operation specific IN parameters.

• General FUSE response is

consisted with OUT header and

operation specific OUT results.

len

opcode

unique

nodeid

Fuse_in_heade

r

……

len

error

unique

Fuse_out_header

<Param 1>

<Param 2>

<Param N>

Fuse_<OPS>_in

<Result 1>

<Result 2>

<Result M>

Fuse_<OPS>_out

Virtqueue
…

…

Filled by Guest; Read only to Host

Filled by Host; Write only to Host

Open and Close Operations in FUSE and SPDK

Lookup

Open

Release

Forget

>> file path

<< file nodeid

>> file nodeid

<< file handler

>> file nodeid

>> file nodeid

>> file handler

spdk_fs_iter loop

spdk_file_open_async

spdk_file_close_async

Resouce preparing

Resouce releasing

Read/Write Operations

Open(File_path)

in POSIX

Close(File_fd) in

POSIX

Implementation Details with Read

…

…

Da

ta

Fuse_in_head

er
Fuse_read_in

Fuse_out_header
da

ta

da

ta

da

ta

Posix Read

Submit Fuse CMD

Virtqueue

spdk_file_readv

Fuse Read

Fetch Fuse CMD

VM

Virtio-fs

Vhost

Target
SPDK vhost-fs

Shared Memory

SPDK SW Stack

IN

OUT

FUSE Read
spdk_file_open_asycRead(File_id, data) in

POSIX

SPDK

16

• Application uses file APIs can be

served via blobfs APIs.

Application Acceleration in VM

VM

MySQL

MyRocks Storage Engine

RocksDB

POSIX RocksDB Env

virtio-fs

FUSE

VFS

NVMe SSD

NVMe Driver

Blobstore

BlobFS

Vhost-fs

fuse_read/write

Read/Write

spdk_file_read/write

17

20

Virtio-fS in Kata Container Storage

• Offer local file

system semantics

and performance

• Virtiofsd daemon

handles VM

requests

• Virtiofsd daemon

performs IO with

file system calls

Host

VM

ContainerLocal FS

Rootfs

<ID>/hostname…

<ID>/secrets

Data Volume

OverlayFS

/var/XXX

/etc/hostname

/run/secrets

/

Virtio-FS

Virtiofsd

21

Kata-container

• The challenge when using with Kata-container

- Shared file system is required for Kata-container

- Overlay file system for container image

- No directory view from Host side when using SPDK vhost-fs

• How to use SPDK vhost-fs with Kata-container

- Data volume can be used for shared data between different containers

22

SPDK vhost-fs in Kata Container Storage

Host VM

ContainerLocal FS

Rootfs

<ID>/hostname…

<ID>/secrets

OverlayFS

/var/XXX

/etc/hostname

/run/secrets

/

Virtiofsd

SPDK
Vhost-fs

Data Volume

libfuse

NVMe SSD

Virtio-fs

23

Software stack of vhost-fs for Kata container

• Vhost-fs for

VM/container

• SPDK Fuse

daemon for host

Host
VM

ContainerHost IO Path

APP

SPDK

NVMe SSD

NVMe Driver

Blobstore

BlobFS

Fuse daemon

VM Kernel

virtio-fs

FUSE

VFS
Kernel

libfuse

FUSE

VFS

Tools or APP

Vhost-fs

24

Summary for SPDK vhost-fs

• Sharing between

Container and host

• Sharing between

containers in different

VM

• Sharing between

containers in one VM

• How to sharing between

containers in different

host

Host
Local FS

SPDK Vhost-fs

NVMe SSD

Host dir

VM

Container

Mount
dir

VM

Container Container

Mount
dir

Mount
dir

Host

25

Future plans

 More generic features in user space file system

-integrated with PMDK for metadata management

 Rootfs image used with the user space file system

-snapshot support

27

Patch

 SPDK Vhost-fs:

SPDK: https://review.gerrithub.io/c/spdk/spdk/+/449162

	Introduce a SPDK vhost FS target to accelerate File Access in VMs and containers
	Slide 2
	Agenda
	Introduction to SPDK Vhost-fs
	Application Acceleration (Local Storage)
	virtio
	Optional solutions using file APIs in VM
	Introduction to FUSE
	Virtio-fs
	SPDK Vhost-fs Target vs. Virtiofsd
	SPDK Blobfs APIs vs. FUSE
	Operation Mapping of FUSE in Virtqueue
	Open and Close Operations in FUSE and SPDK
	Implementation Details with Read
	Application Acceleration in VM
	SPDK Vhost-fs with Kata Container
	Virtio-fS in Kata Container Storage
	Kata-container
	SPDK vhost-fs in Kata Container Storage
	Software stack of vhost-fs for Kata container
	Summary for SPDK vhost-fs

