
Efficient Performance Monitoring in the Cloud with

Virtual Performance Monitoring Units (PMUs)

Contributors

Wei Wang, Kan Liang, Like Xu, Andi Kleen, Guang Zeng, Danmei Wei

Presenter

Sean Christopherson

KVM Forum

2019

Agenda

Project Goals

Background

Our Solutions

Test Results

Current Status

Future Works

Part 1: Project Goals

Virtual PMUs are usually disabled in today’s clouds

Project Goals

*Other names and brands may be claimed as the property of others. 4

Virtual PMUs are usually disabled in today’s clouds

Project Goals

▪ inaccurate profiling results

▪ lack of advanced PMU features (e.g., LBR and PEBS)

Many cloud vendors (e.g., Google*, Alibaba*, Tencent*, Huawei*, Baidu*) have a strong

interest in making PMUs usable in their cloud productions

What we did

▪ Reduced PMU virtualization overhead to generate more accurate profiling results

▪ Added support for LBR and PEBS virtualization in KVM

*Other names and brands may be claimed as the property of others. 5

Part 2: Background

Each Fixed Function Counter

counts a specific event

▪ Fixed counter 0:

Instruction retired

▪ Fixed counter 1:

Unhalted core cycles

▪ Fixed counter 2:

Reference cycles

General Purpose Counters can

be configured to count any

supported event

▪ Unhalted core cycles

▪ Instruction retired

▪ Branch instruction retired

▪ …

Performance Monitoring Units

Last Branch Records

▪ Stack of MSRs that records

branch sources and destinations

▪ Enabled via DEBUGCTRL MSR

▪ Usually takes a PMU counter to

do branch sampling

Each logical CPU has its own PMU

Fixed Counter 0

Fixed Counter 1

Fixed Counter 2

••
•

LBR Stack

Entry 0

Entry 1

Entry 2

Entry N

DEBUGCTRL

GP Counter 0

GP Counter 1

GP Counter 2

GP Counter 3

GP Counter 4

GP Counter 5

GP Counter 6

GP Counter 7

7

PMU can be configured to

generate Performance

Monitoring Interrupts after N

events

▪ Sampling

▪ Histograms

▪ …

PMU Usage in Native Linux*

Linux Userspace Perf Utility

Linux Kernel Perf Subsystem

$ perf record -e branch-misses ./test_program

syscall

test_program

Thread

PMU

Perf

Event

MSR read/write PMU Interrupts

Perf Event:

▪ A scheduling entity from PMU’s point of view

▪ Stores the config and state data

▪ Usually associated with one or more PMU counters

CPU

*Other names and brands may be claimed as the property of others. 8

PMUs Usage in Linux* KVM Guest

vPMU KVM vCPU

vMSR read/write vPMI

Host Linux Kernel Perf Subsystem vCPU ThreadPerf

Event

PMU CPU

MSR read/write PMI

Function calls Callbacks

Linux Userspace Perf Utility

Linux Kernel Perf Subsystem

$ perf record -e branch-misses ./test_program

test_program

ThreadPerf

Event

Guest Linux

~2.6 ms

*Other names and brands may be claimed as the property of others. 9

Part 3: Our Solutions

vPMU Working Model Optimization

vPMU KVM vCPU

vMSR read/write vPMI

Host Linux

Perf Subsystem
vCPU ThreadPerf

Event

PMU CPU

MSR read/write PMI

Function calls

Linux Userspace Perf Utility

Linux Kernel Perf Subsystem

$: perf record -e branch-misses ./test_program

test_program

Thread
Perf

Event

Guest Linux*

<700ns

Callbacks

*Other names and brands may be claimed as the property of others. 11

Last Branch Records (LBR) Virtualization

*Other names and brands may be claimed as the property of others.

PMU CPU

Linux Userspace Perf Utility

Linux Kernel Perf Subsystem

$ perf record –b ./test_program

test_program

Thread
Perf Event

Guest Linux*

vPMU
KVM vCPU

vLBR Stack
Host Linux

Perf Subsystem

vCPU Thread
Perf

Event

vMSR read/write

MSR read/write

vCPU running

vLBR Enable

LBR Stack

LBR Enable

12

Part 4: Test Results

▪ CPU: Intel® Xeon® Processor E5-2699 v4 @ 2.20GHz

▪ Host and Guest Kernel: Linux* 4.19.0, booted with

“nowatchdog”

▪ VM Configuration: 4 vCPUs, 8G memory

Test Environment

*Other names and brands may be claimed as the property of others. 14

Latency Comparison (Logarithmic)

2641807

8114498

688

9073

1

10

100

1000

10000

100000

1000000

10000000

MSR Update Latency Guest PMI Latency

Latency: ns

Non-optimization Optimization

15

3500x

900x

$ perf record -e branch-misses ./test_program

Branch Miss Sampling

Test in Guest without optimization:
82.64% ftest [kernel.kallsyms] [k] perf_event_task_tick

6.15% ftest [kernel.kallsyms] [k] scheduler_tick

4.62% ftest [kernel.kallsyms] [k] trigger_load_balance

2.20% ftest [kernel.kallsyms] [k] raise_softirq

1.32% ftest [kernel.kallsyms] [k] nohz_balance_exit_idle

0.66% ftest [kernel.kallsyms] [k] run_posix_cpu_timers

...

Test in Guest with optimization:
46.18% ftest ftest [.] main

22.29% ftest ftest [.] bar

20.29% ftest ftest [.] foo

10.47% ftest ftest [.] qux

0.36% ftest libc-2.23.so [.] random

0.24% ftest libc-2.23.so [.] random_r

...

Perf run doesn’t complete due to the large vPMU overhead

Results gathered via stopping the run via “ctrl-c”

Test on Host:
48.19% ftest ftest [.] main

21.21% ftest ftest [.] bar

18.44% ftest ftest [.] foo

11.64% ftest ftest [.] qux

0.40% ftest libc-2.23.so [.] __random

0.02% ftest libc-2.23.so [.] __random_r

...

16

Last Branch Recording (LBR) Tests
$ perf record --call-graph lbr ./ftest

Host Results

Guest Results

17

Part 5: Current Status

▪ vPMU optimization

▪ https://lkml.org/lkml/2018/11/1/937 (full optimization, NAK’d)

▪ https://lkml.org/lkml/2019/10/27/834 (intermediate step)

▪ LBR

▪ https://lkml.org/lkml/2019/8/6/215

▪ PEBS

▪ https://lkml.org/lkml/2019/10/27/53

Current Status

19

https://lkml.org/lkml/2018/11/1/937
https://lkml.org/lkml/2019/10/27/834
https://lkml.org/lkml/2019/8/6/215
https://lkml.org/lkml/2019/10/27/53

Part 6: Future Works

▪ Continue to upstream the patches

▪ Support arch v5 PMU features

Future Works

21

Q&A

Thank You!

Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a

particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in

trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to

change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published

specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or

by visiting www.intel.com/design/literature.htm

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

23

http://www.intel.com/design/literature.htm

	Efficient Performance Monitoring in the Cloud with Virtual Performance Monitoring Units (PMUs)
	Slide 2
	Part 1: Project Goals
	Project Goals
	Project Goals
	Part 2: Background
	Performance Monitoring Units
	PMU Usage in Native Linux*
	PMUs Usage in Linux* KVM Guest
	Part 3: Our Solutions
	vPMU Working Model Optimization
	Last Branch Records (LBR) Virtualization
	Part 4: Test Results
	Test Environment
	Latency Comparison (Logarithmic)
	Branch Miss Sampling
	Last Branch Recording (LBR) Tests
	Part 5: Current Status
	Current Status
	Part 6: Future Works
	Future Works
	Q&A
	Slide 23

