
Towards the Higher
Level Debugging with
QEMU
Pavel Dovgalyuk, ISP RAS

About us
● Ivannikov Institute for System Programming of the RAS
● Emulation-related projects
● Full system record/replay in mainline QEMU
● VM introspection and instrumentation
● Stealth WinDbg stub for QEMU
● Reverse debugging patches ready for 4.3 (or 5.0?)

● https://github.com/ispras/swat

3

Plan
● Approaches to system-wide debugging
● Problems of system-wide debugging
● New ideas and proposals

4

Debugging with QEMU/KVM
● QEMU/KVM

– Debugging OS/drivers/BIOS
– Malware analysis

● QEMU only
– Execution recording (time travel debugging)
– Cross-platform debugging

5

Debugger functions
● Processes

– Pages
– Threads/Fibers
– Process switches

● Executables
– Memory areas
– Function names
– Variable names
– Call stack

● Breakpoints
– Memory access
– Register access

● Events
– Exceptions
– Interrupts
– System calls
– I/O

6

Full system debugging with WinDbg

● OS debug mode has to be
enabled

● Has complete kernel
information

● Can debug separate
processes

● Unofficial stub for QEMU
● Windows only

7

Developer’s view to the debugging

● Run gdb server in the
guest

● Run gdb client on the
host

● Attach to guest process
● Load symbols
● Debug the program

● Run gdb client
● Load kernel symbols
● Connect to

guest/emulator gdb
server

● Debug the kernel

8

Reverser’s view to the debugging

● Run gdb server in the
guest

● Run gdb client on the
host

● Attach to guest process
● Load symbols
● Debug the program

● Run gdb client
● Load kernel symbols
● Connect to

guest/emulator gdb
server

● Debug the kernel

9

Full system debugging with GDB

● Need to figure out the
address for loading
symbols from the binaries

● Not usable for Windows
● Can’t distinguish the

processes even when
having the symbols

10

Jedi debugging
● Use the Force to figure out CR3
● break *0xdeadf00d if $cr3=0x1ee7

11

Debugging problems
● VM Introspection to extract OS-level information

– Processes and threads
– Call stack
– Address spaces and page tables
– Executed images and symbol/debug information

● Client which capable of full-system debugging
– Process and thread support
– Support for switching the address spaces

12

Introspection: guest agents
● Have full control to the guest data structures and API
● Require SDK inside the image

– or debug mode for WinDbg
– or running gdbserver

● Side effects
– behavior change
– can be detected by malware
– can’t be recorded/replayed

13

Introspection: memory analysis
● Rekall/Volatility
● Parse memory dumps
● Include many OS profiles
● Hardly applicable for custom kernels and esoteric OSes
● Too slow for runtime monitoring

14

Introspection: event hooking
● Volatility-like profiles and event monitoring (PANDA)

– Needs configuring for every kernel
– Requires SDK for the guest

● Profile-less and agent-less event monitoring (SWAT)
– Single config for all Linux kernels 2.x-4.x
– Lacks some details of the kernel internals

15

pyvmidbg
● OS-agnostic debug interface
● Uses Rekall for introspection
● Intended to support

– Linux and Windows
– all debuggers

● https://github.com/Wenzel/pyvmidbg

16

pyvmidbg

17

pyvmidbg

18

LibVMI
● Extracts CPU and memory state from running VM
● Supports runtime events

– Memory access, privileged registers access, debug events, …
● Suitable for GDB and WinDbg stubs
● Doesn’t support QEMU yet

● https://github.com/libvmi/libvmi

19

Instrumenting the code
● Debugger can’t parse call stack when frame pointer is omitted
● Break on specific opcode

– syscall – ok for libvmi (exception)
– call/ret – not ok for libvmi

● Break on register access
– CR3 – ok for libvmi (privileged)
– ESP – not ok for libvmi

● Impossible for HW hypervisors
● Possible with QEMU, but not implemented yet

20

More debugging problems
● Too dumb breakpoints
● Can’t inspect hardware state except the CPU registers

21

Breakpoints: emulator-side conditions

● Set breakpoint
● Run
● Stop at breakpoint
● Check condition
● Run
● Stop at breakpoint
● Check condition
● Run
● Stop at breakpoint
● Check condition
● Stop execution

● Set breakpoint

● Run

● Check condition

● Run

● Check condition

● Run

● Check condition

● Stop execution

22

More breakpoints
● I/O breakpoints
● Memory area (e.g. whole array) watchpoints
● Breakpoints at specific process
● Breakpoints at interrupts and exceptions

● Need to extend QEMU and the debugger

23

Device introspection and debugging

● Hardware-software codesign
● Driver debugging
● Emulator debugging

● Not very handy approaches

– Debug logs in QEMU
– Running two debuggers

24

Conclusion
● Only WinDbg supports system-wide view
● LibVMI is not enough for extracting all the details
● Need synchronized QEMU-GDB efforts to extend the

protocol

● Solutions
– use only Windows as a guest
– create new debugger (maybe based on the existing one)

25

LibVMIINewDbg QEMU+

introspection and
instrumentation

system-wide
debugging

and maybe
others

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

