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About us
● Ivannikov Institute for System Programming of the RAS
● Emulation-related projects
● Full system record/replay in mainline QEMU
● VM introspection and instrumentation
● Stealth WinDbg stub for QEMU
● Reverse debugging patches ready for 4.3 (or 5.0?)

● https://github.com/ispras/swat
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Plan
● Approaches to system-wide debugging
● Problems of system-wide debugging
● New ideas and proposals
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Debugging with QEMU/KVM
● QEMU/KVM

– Debugging OS/drivers/BIOS
– Malware analysis

● QEMU only
– Execution recording (time travel debugging)
– Cross-platform debugging
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Debugger functions
● Processes

– Pages
– Threads/Fibers
– Process switches

● Executables
– Memory areas
– Function names
– Variable names
– Call stack

● Breakpoints
– Memory access
– Register access

● Events
– Exceptions
– Interrupts
– System calls
– I/O
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Full system debugging with WinDbg

● OS debug mode has to be 
enabled

● Has complete kernel 
information

● Can debug separate 
processes

● Unofficial stub for QEMU
● Windows only
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Developer’s view to the debugging

● Run gdb server in the 
guest

● Run gdb client on the 
host

● Attach to guest process
● Load symbols
● Debug the program

● Run gdb client
● Load kernel symbols
● Connect to 

guest/emulator gdb 
server

● Debug the kernel
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Reverser’s view to the debugging

● Run gdb server in the 
guest

● Run gdb client on the 
host

● Attach to guest process
● Load symbols
● Debug the program

● Run gdb client
● Load kernel symbols
● Connect to 

guest/emulator gdb 
server

● Debug the kernel
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Full system debugging with GDB

● Need to figure out the 
address for loading 
symbols from the binaries

● Not usable for Windows
● Can’t distinguish the 

processes even when 
having the symbols
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Jedi debugging
● Use the Force to figure out CR3
● break *0xdeadf00d if $cr3=0x1ee7
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Debugging problems
● VM Introspection to extract OS-level information

– Processes and threads
– Call stack
– Address spaces and page tables
– Executed images and symbol/debug information

● Client which capable of full-system debugging
– Process and thread support
– Support for switching the address spaces
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Introspection: guest agents
● Have full control to the guest data structures and API
● Require SDK inside the image

– or debug mode for WinDbg
– or running gdbserver

● Side effects
– behavior change
– can be detected by malware
– can’t be recorded/replayed
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Introspection: memory analysis
● Rekall/Volatility 
● Parse memory dumps
● Include many OS profiles
● Hardly applicable for custom kernels and esoteric OSes
● Too slow for runtime monitoring
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Introspection: event hooking
● Volatility-like profiles and event monitoring (PANDA)

– Needs configuring for every kernel
– Requires SDK for the guest

● Profile-less and agent-less event monitoring (SWAT)
– Single config for all Linux kernels 2.x-4.x
– Lacks some details of the kernel internals
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pyvmidbg
● OS-agnostic debug interface
● Uses Rekall for introspection
● Intended to support

– Linux and Windows
– all debuggers

● https://github.com/Wenzel/pyvmidbg
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pyvmidbg
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pyvmidbg
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LibVMI
● Extracts CPU and memory state from running VM
● Supports runtime events

– Memory access, privileged registers access, debug events, …
● Suitable for GDB and WinDbg stubs
● Doesn’t support QEMU yet

● https://github.com/libvmi/libvmi
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Instrumenting the code
● Debugger can’t parse call stack when frame pointer is omitted
● Break on specific opcode

– syscall – ok for libvmi (exception)
– call/ret – not ok for libvmi

● Break on register access
– CR3 – ok for libvmi (privileged)
– ESP – not ok for libvmi

● Impossible for HW hypervisors
● Possible with QEMU, but not implemented yet
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More debugging problems
● Too dumb breakpoints
● Can’t inspect hardware state except the CPU registers
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Breakpoints: emulator-side conditions

● Set breakpoint
● Run
● Stop at breakpoint
● Check condition
● Run
● Stop at breakpoint
● Check condition
● Run
● Stop at breakpoint
● Check condition
● Stop execution

● Set breakpoint

● Run

● Check condition

● Run

● Check condition

● Run

● Check condition

● Stop execution



22

More breakpoints
● I/O breakpoints
● Memory area (e.g. whole array) watchpoints
● Breakpoints at specific process
● Breakpoints at interrupts and exceptions

● Need to extend QEMU and the debugger
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Device introspection and debugging

● Hardware-software codesign
● Driver debugging
● Emulator debugging

● Not very handy approaches

– Debug logs in QEMU
– Running two debuggers
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Conclusion
● Only WinDbg supports system-wide view
● LibVMI is not enough for extracting all the details
● Need synchronized QEMU-GDB efforts to extend the 

protocol

● Solutions
– use only Windows as a guest
– create new debugger (maybe based on the existing one)
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LibVMIINewDbg QEMU+

introspection and 
instrumentation

system-wide 
debugging

and maybe 
others
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