
Dario Faggioli <dfaggioli@suse.com>
Software Engineer - Virtualization Specialist, SUSE
GPG: 4B9B 2C3A 3DD5 86BD 163E 738B 1642 7889 A5B8 73EE
https://about.me/dario.faggioli
https://www.linkedin.com/in/dfaggioli/
https://twitter.com/DarioFaggioli (@DarioFaggioli)

Core-Scheduling for Virtualization:
Where are We? (If We Want It!)

mailto:dfaggioli@suse.com
https://about.me/dario.faggioli
https://www.linkedin.com/in/dfaggioli/
https://twitter.com/DarioFaggioli

Dario Faggioli
• Ph.D on Real-Time Scheduling, SCHED_DEADLINE

• 2011, Sr. Software Engineer @ Citrix
The Xen-Project, hypervisor internals,
NUMA-aware scheduler, Credit2 scheduler,
Xen scheduler maintainer (still am)

• 2018, Virtualization Software Engineer @ SUSE
Still Xen, but also KVM, QEMU, Libvirt;
Scheduling, VM’s virtual topology,
performance evaluation & tuning

https://www.suse.com

Scheduling & Core Scheduling

Scheduling

Letting tasks run on CPUs

Core Core Core Core

runqueue

t2 t4 t9

Could be vcpus of VMs

Running tasks

Busy core(s)

Idle

Runqueue is empty,
no tasks waiting to run

Scheduling

Letting as much tasks as possible to run on CPUs

Core Core Core Core

runqueue

t2 t4 t9

Running tasks

Ready tasks. Would run,
but are waiting in runquque(s)
as there are not idle cores

t3 t6 t8

t5

Scheduling

Letting runnable tasks run on CPUs

Core Core Core Core

runqueue

t2 t4 t9

Running tasks

Runqueue is empty,
no tasks waiting to run

t1

t5

t3

t8

Blocked tasks

Simultaneous MultiThreading (SMT)
• Cores are split in Threads
• Multiple instruction streams at the same time

– Increased parallelism
• Some CPU resources are shared
• Threads share caches (even L1s)
• Performance boost

– Common knowledge: no more than +30%
– Could be neuter or even be a slow down!

• x86:
– Intel: since Pentium 4 (HyperThreading)
– AMD: since Zen architecture

• 2 threads per core most common (but not necessarily)
• Different performance between 1 thread running vs. both
• Schedulers sees threads as CPUs

– But they do deal with SMT already

Core CoreCore

When all threads of a core are busy, tasks running on the core are slower:

• Overall: good. 330% speed is
better than 300%, as it would
be without SMT (is it always?)

• Seen from t1 (or t2): it’s slower!
E.g., t3 and t4 run at 100% speed,
t1 and t2 run at ~ 65%.

t1 t3 t4t2

100% 100%65%65%

SMT Execution

130%

330% > 300%

Schedulers (should!) be SMT aware already

SMT Scheduling

* if goal is performance

t2 t4 t9t5

Core Core Core Core

t2 + t4 + t5 + t9 =
100% + 100% + 100% + 100% =
400%

YES!

t2 t4 t9t5

Core Core Core Core

t2 + t4 + t5 + t9 =
65% + 65% + 100% + 100% =
330%

NO!

SMT: Is it Worth?

(Intel) System with 4 Cores and HyperThreading (HT)
• 8 CPUs with HT enabled
• 4 CPUs with HT disabled

No!! No-HT is faster!

HyperThreading:
Intel implementation of SMT

SMT: Is it Worth?

(Intel) System with 4 Cores and HyperThreading (HT)
• 8 CPUs with HT enabled
• 4 CPUs with HT disabled

No!! No-HT is faster! Yes!! No-HT is 30% slower!

HyperThreading:
Intel implementation of SMT

Core Scheduling: How it Works
(Some) tasks are “grouped”
Tasks from same group ⇒ scheduled on same core
Never mix on same core tasks from different groups
Never mix on same core grouped and ungrouped tasks
Some CPUs (threads) may stay idle, even if runqueue is not empty

t2 t6 tBt5

Core 0 Core 1 Core 2 Core 3

runqueue
tA

t8t7

t3

tasks in the
same group

“ungrouped” tasks

t4

Motivations & Use Cases

Cloud, charging VMs for CPU time:
• t1, t2 are vCPUs of VM1 (from customer A)
• t3, t4 are vCPUs of VM2 (from customer B)
• T5 and t6 is vCPU of VM3 (from customer C)

Without Core Scheduling:

Core Scheduling: Fairness of Accounting

t2 t4 t5

Core Core Core Core

t1t3

vCPUs of the same VM

● t1 and t2, in VM1 run at different
speeds

● t3 and t4, in VM2, run at different
speeds

● Speed of VM1, and hence bill of
customer A:

○ variable / not-consistent
○ influenced by VM2, and hence by

customer B (and vice versa)

t6 t7

Cloud, charging VMs for CPU time:
• t2, t6 are vCPUs of VM1 (from customer A)
• t8, t7 are vCPUs of VM2 (from customer B)
• t5 is vCPU of VM3 (from customer C)

With Core Scheduling:

Core Scheduling: Fairness of Accounting

● Improved consistency
● No cross-VM (and cross-customer!!)

side effects

t2 t1 t5

Core Core Core Core

t4t3

vCPUs of the same VM

t6 t7

Virtual Machines can have topologies:
• t1, t2, t3, t4 are vCPUs of VM1 (from customer A)
• VM1 ha a topology: 2 Core, with HT

– t1 & t2 are “virtual HyperThread siblings”
– t3 & t4 are “virtual HyperThread siblings”

• In-guest topology aware optimizations can be adopted (better perf.)
Without Core Scheduling:

Core Scheduling: in Guest Topology

t2 t4 t5

Core Core Core Core

t1t3

vCPUs of the same VM
● t1, t2, t3 and t4 may run on any cores
● VM virtual topology not matching with

where vCPUs run on host
● Guest scheduler will treat them as

HyperThread siblings
● Suboptimal performancet6

Core Scheduling: in Guest Topology

● t1 and t2 (t3 and t4) will always run
together on a core the same core

● VM virtual topology will match with
where vCPUs run on host

● Guest scheduler can safely treat them
as HyperThread siblings

● Boost performancet2 t1 t5

Core Core Core Core

t4t3

vCPUs of the same VM

Virtual Machines can have topologies:
• t1, t2, t3, t4 are vCPUs of VM1 (from customer A)
• VM1 ha a topology: 2 Core, with HT

– t1 & t2 are “virtual HyperThread siblings”
– t3 & t4 are “virtual HyperThread siblings”

• In-guest topology aware optimizations can be adopted (better perf.)
With Core Scheduling:

t6

Core Scheduling: Security & Isolation

Spectre, Meltdown & Friends
● Spectre v1 - Bounds Check Bypass
● Spectre v2 - Branch Target Isolation
● Meltdown - Rogue Data Cash Load (a.k.a. Spectre v3)
● Spectre v3a - Rogue System Register Read
● Spectre v4 - Speculative Store Bypass
● …
● ...
● LazyFPU - Lazy Floating Point State Restore
● L1TF - L1 Terminal Fault (a.k.a. Foreshadow)
● MDS - Microarch. Data Sampling (a.k.a. Fallout, ZombieLoad, …)
● ...

Attack Scenarios:

Virtualization Platform

Virtualization, security, isolation ...

Host: Kernel / Hypervisor

Device Drivers

Host
User
Apps

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM3

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM4

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM1

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM2

Attack Scenarios:

Virtualization Platform

Virtualization, security, isolation ...

Host: Kernel / Hypervisor

Device Drivers

Host
User
Apps

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM3

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM4

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM1

Guest Kernel

Guest
User
Apps

Guest
User
Apps

Guest
User
Apps

VM2

- Host User to
Other Host User(s)
- Guest User to
Other Guest User(s)
- Host User to
Host Kernel
- Guest User to
Guest Kernel
- Guest to
Other Guest(s)
- Guest User to
Hypervisor
- Guest Kernel to
Hypervisor

== successfully attacked!
 (e.g., read data/steal secrets)

HW

L1TF - Virtualization (Foreshadow-NG, CVE-2018-3646)

Regular execution
App accesses data in
non present page:
1. Guest page tables

page !present
2. Guest page fault

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

FAULT!

Potentially Malicious
App A (e.g., trying to
steal data within
VM 1): stopped!page present: N

* Swap page in
* SEGFAULT
* ...

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-CVE-2018-3646

HW

L1TF - Virtualization (Foreshadow-NG, CVE-2018-3646)

Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

NB!!!

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-CVE-2018-3646

HW

L1TF - Virtualization (Foreshadow-NG, CVE-2018-3646)

Speculative execution
App (speculatively)
accesses data in non
present page:
1. Guest page tables

page !present
2. Host page tables
2. Check L1 cache

3. Hit! Load data in

CPU

Wait… What?!?!

Host: Kernel /
 Hypervisor

Device Drivers

CPUs

I/O

Memory
Management

Scheduler

Guest Kernel

Guest User App A

VM 1

Guest Virt. Addr.

Invalid for AppA L1 Cache

L2 Cache

L2 Cache

Memory

Potentially malicious App A,
or VM (or both), managed
to speculatively read
whatever data is present in
L1 cache: can be host’s or
other VMs’ secrets!

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-CVE-2018-3646

L1TF: VM-to-VM attack scenario
Sequential Context (no HyperThreading):

Concurrent Context (with HyperThreading):

L1 Cache

VM 1

1. VM 1 runs on CPU
2. VM 1 puts secrets in L1 cache
3. VM 1 leaves CPU
4. VM 2 runs on CPU
5. VM 2 reads VM 1’s secrets!

VM 2
(1)

(2)

(3)

(4)

(5 -
L1TF)

L1 Cache

VM 1 VM 2(1) (3)
(2)

(4 -
L1TF)

1. VM 1 runs on Thread A
2. VM 2 runs on Thread B
3. VM 1 puts secrets in L1 cache
4. VM 2 reads VM 1’s secret from

L1 cache

Context Switch

No context switch
needed...

Guest (Kernel) to Other Guest(s) attack

L1TF: VM-to-VM attack scenario
Sequential Context (no HyperThreading):

Concurrent Context (with HyperThreading):

L1 Cache

VM 1

1. VM 1 runs on CPU
2. VM 1 puts secrets in L1 cache
3. VM 1 leaves CPU
4. Hypervisor: flush L1 cache
5. VM 2 runs on CPU
6. VM 2 reads VM 1’s secrets!

VM 2
(1)

(2)

(3)

(5)

L1 Cache

VM 1 VM 2(1) (3)
(2)

(4 -
L1TF)

1. VM 1 runs on Thread A
2. VM 2 runs on Thread B
3. VM 1 puts secrets in L1 cache

Hypervisor: THERE’S NOTHING
I CAN DO !!!

4. VM 2 reads VM 1’s secret from
L1 cache

Co
nt

ex
t S

w
itc

h

(4)

Guest (kernel) to Other Guest(s) attack

L1TF: VM-to-Hypervisor attack scenario
Sequential Context (no HyperThreading):

Concurrent Context (with HyperThreading):

L1 Cache

1. Hypervisor runs on CPU
2. Hypervisor puts secrets in L1
3. Hypervisor leaves CPU
4. VM 2 runs on CPU
5. VM 2 reads hypervisor’s

secrets!

VM 2
(1)

(2)

(3)

(4)

(5 -
L1TF)

L1 Cache

VM 2(1) (3)
(2)

(4 -
L1TF)

1. Hypervisor runs on Thread A
2. VM 2 runs on Thread B
3. Hypervisor puts secrets in L1
4. VM 2 reads VM 1’s secret from

L1 cache

VMEntry

hyper-
visor

hyper-
visor

Guest Kernel to Other Guest(s) attack

No VMEntry
needed...

L1TF: VM-to-Hypervisor attack scenario
Sequential Context (no HyperThreading)

Concurrent Context (with HyperTthreading)

L1 Cache

hyper-
visor

1. Hypervisor runs on CPU
2. Hypervisor puts secrets in L1
3. Hypervisor leaves CPU
4. Hypervisor: flush L1 cache
5. VM 2 runs on CPU
6. VM 2 reads hypervisor’s secrets!

VM 2
(1)

(2)

(3)

(5)

L1 Cache

hyper-
visor

VM 2(1) (3)
(2)

(4 -
L1TF)

1. Hypervisor runs on Thread A
2. VM 2 runs on Thread B
3. Hypervisor puts secrets in L1

Hypervisor: THERE’S NOTHING
I CAN DO !!!

4. VM 2 reads Hypervisor’s
secret from L1 cache

VM
En

tr
y

(4)

Guest kernel to Other Guest(s) attack

L1TF: Current Status
Mitigations:

• L1DFlush (Sequential Context), disable HyperThreading (Concurrent Context)
Still non-mitigated, if HT on
Almost impossible to detect (exp. with TSX) when attack is being performed
Attacker can (with TSX) scan physical memory with bandwidth of 1 gigabit/sec [*]
Ongoing efforts:

• Memory Isolation (e.g., guests|hypervisor)
– “Kernel Page Table Isolation all the way down”
– Can be effective in mitigating VM-to-Hypervisor concurrent contexts

attacks
– Not effective for VM-to-VM concurrent context attacks

• Core scheduling
– Needed for mitigating concurrent contexts VM-to-VM attacks
– Not effective for VM-to-hypervisor attacks

[*] Kernel Recipes 2019 - Kernel hacking behind closed doors

https://www.youtube.com/watch?v=D152ld9eptg

L1TF: Current Status
Mitigations:

• L1DFlush (Sequential Context), disable HyperThreading (Concurrent Context)
Still non-mitigated, if HT on
Almost impossible to detect (exp. with TSX) when attack is being performed
Attacker can (with TSX) scan physical memory with bandwidth of 1 gigabit/sec [*]
Ongoing efforts:

• Memory Isolation (e.g., guests|hypervisor)
– “Kernel Page Table Isolation all the way down”
– Can be efective in mitigating concurrent contexts attacks
– Not effective for VM-to-VM concurrent context attacks

• Core scheduling
– Needed for mitigating concurrent contexts VM-to-VM attacks
– Not effective for VM-to-hypervisor attacks

[*] Kernel Recipes 2019 - Kernel hacking behind closed doors

L1 Cache

VM 1(1) (3)
(2)

(4 -
L1TF)

1. VM 1 runs on Thread A
2. VM 1 runs on Thread B
3. VM 1 puts secrets in L1 cache

Hypervisor: THERE’S NOTHING
I CAN DO !!!

4. VM 1 reads VM 1’s secret from
L1 cache

VM 1

“Hey, VM1, you’re spying on yourself…”

https://www.youtube.com/watch?v=D152ld9eptg

Core Scheduling Adoption Status

Core Scheduling in Hypervisors

• WMVware (ESX): they have
– They have it: Side-Channel Aware Scheduler v2 (SCAv2)
– Per-host (I think)

• Microsoft (Hyper-V):
– They have it: The Hyper-V Core Scheduler
– Basically per-host

• The Xen-Project (Xen hypervisor):
– Will have it, next release (4.13), as “Experimental”
– Core scheduling in the Xen hypervisor - SUSE Labs Conference 2019
– Per-host (will become finer grained, but not per-VM)

https://blogs.vmware.com/vsphere/2019/05/which-vsphere-cpu-scheduler-to-choose.html
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://www.youtube.com/watch?v=3KtnkBbHNQQ

Core Scheduling in Linux/KVM
How it is being implemented:

• Co-Schedulable tasks are tagged ⇒ vCPUs of the same VM
– Same tag (or no tag) ⇒ can be scheduled together on a core

• schedule() picks:
– tagged task ⇒ task with the same tag on sibling(s); or idle
– untagged task ⇒ untagged task on sibling(s); or idle
– take priority into account
– per-VM

• Challenges
– How to quickly search for matching tagged task
– task priority/vruntime weren’t comparable across CPUs/runqueues
– Fairness
– Potential starvation

• Status: [RFC PATCH v3 00/16] Core scheduling v3

https://lwn.net/ml/linux-kernel/cover.1559129225.git.vpillai@digitalocean.com/

Core Scheduling: Xen Approach
pCPUs and vCPUs ⇒ Sched. Resources and Sched. Units

• Sched. Resource: a group of pCPUs (e.g., all pCPUs of a Core)
• Sched. Unit: a group of vCPUs (e.g., 2 on a system with SMT)
• Hypervisor scheduler schedules Units on Resources
• Which vCPUs are in which Sched. Unit never changes
• vCPUs within Sched. Units can block
• pCPUs within Sched. Resources can go idle

t1 t2 t4t5

S. Res S. Res S. Res S. Res

runqueue

t9

t3

tB

t7 t8 t6

t8 is blocked, Sched. Res. partially idle
t6 is blocked, Sched. Res. partially idle

Sched. Unit

NO!!!

Core Scheduling: Linux (Patches) Approach

Flexible: works with any group of tasks
• +++ Very powerful
• --- Complex

E.g. per-VM tagging:
• Any vCPU of a VM is scheduled only together with other vCPUs of the VM
• time t=t_0

t1 t4 t5tB

Core Core Core Core

runqueue

tDt8 tFtAt3

t1

t4t3

t2

vCPUs of VM1 == tag 1

t5

t8t7

t6

vCPUs of VM2 == tag 2

tC

t2

t7t6

Core Scheduling: Linux (Patches) Approach

Flexible: works with any group of tasks
• +++ Very powerful
• --- Complex

E.g. per-VM tagging:
• Any vCPU of a VM is scheduled only together with other vCPUs of the VM
• later time t=t_0 + Dt

t1 t4 t5

tB

Core Core Core Core

runqueue

tDt6 tFtAt3

t1

t4t3

t2

vCPUs of VM1 == tag 1

t5

t8t7

t6

vCPUs of VM2 == tag 2

tCt7t8

t2

t2 is blocked

Core

vCore1-VM1 == tag 1

vCore2-VM1 == tag 2

t5Flexible: works with any group of tasks
• +++ Very powerful
• --- Complex

E.g. virtual-Core tagging (as Xen does):
• Two vCPUs (of the same VM) are always scheduled together
• time t=t_0

Core Scheduling: Linux (Patches) Approach

t1 t2 t8tB

Core Core Core

runqueue

tDt7 tFtAt3

t1

t4t3

t2

t8t7

t6

vCore-1-VM2 == tag 3

tC

vCore2-VM2 == tag 4

t4 t6t5

Core

vCore1-VM1 == tag 1

vCore2-VM1 == tag 2

t5Flexible: works with any group of tasks
• +++ Very powerful
• --- Complex

E.g. virtual-Core tagging (as Xen does):
• Two vCPUs (of the same VM) are always scheduled together
• later time t=t_0 + Dt

Core Scheduling: Linux (Patches) Approach

t3 t4 t4tB

Core Core Core

runqueue

tDt3 tFtA

t1

t4t3

t2

t8t7

t6

vCore-1-VM2 == tag 3

tC

vCore2-VM2 == tag 4

t1 t2t8t7

t2t1

Benchmarks

MMTests

• Historically for Memory Management testing, general now
• Fetching, building, configuring, running, collecting results, comparing

– config-file == env. variables
– shellpacks == wrappers!

• Monitors: perf, ftrace, ...
• Dashboards for comparing results
• Being enhanced for virt: dfaggioli/mmtests/tree/bench-virt
• CPU/Memory benchmarks: Hackbench, STREAM, NAS, Libmicro (syscall

& glibc microbenchmarks), Speccpu2016, …
• IO benchmarks: Iozone, Bonnie, Postmark, Reaim, Dbench4, …
• Networking: Sockperf, Netperf, Netpipe, Siege, …
• Structured benchmarks: Kernbench, Specjvm, Pgbench, Sqlite, Postgres

& MariaDB OLTP benchmarks, …

https://github.com/dfaggioli/mmtests/tree/bench-virt

MMTests

./run-mmtests.sh BASELINE --config configs/config-netperf-unbound

./run-mmtests.sh PTI-ON --config configs/config-netperf-unbound

./bin/compare-mmtests.pl --directory work/log --benchmark netperf-tcp \
 --names BASELINE,PTI-ON

 BASELINE PTI-ON

 Hmean 64 1205.33 (0.00%) 2451.01 (103.35%)

 Hmean 128 2275.90 (0.00%) 4406.26 (93.61%)

 … … …

 Hmean 8192 36768.43 (0.00%) 43695.93 (18.84%)

 Hmean 16384 42795.57 (0.00%) 48929.16 (14.33%)

Benchmarking Setup

• Test machine: Intel Xeon, 4 Cores, with HT (8 CPUs)
• (for Xen: Dom0 always with 8 vCPUs)
• VMs:

– 1 VM with 8 vCPUs, or
– 1 VM with 4 vCPUs, or
– 2 VMs with 8 vCPUs each (overcommit)

• Scenarios (all results compared to “without patches, HT on”, positive
numbers are better):
– No HT
– Patch overhead
– With Core Scheduling

Benchmarks:
Stream (memory benchmark, 4 tasks in parallel)
Kernbench (kernel build with 2, 4, 8 or 16 threads)
Hackbench (communication via pipes, machine saturated)
Mutilate (load generator for memcached)
Netperf (TCP/UDP/UNIX, two communicating tasks)
Pgioperf (not reported) / Sysbench (only for Linux)

Benchmarking Setup

Benchmarks run inside VMs:
• STREAM: pure memory benchmark (various kind of mem-ops done in

parallel, with parallelism NR_CPUS/2 tasks)
• Kernbench : builds a kernel, with varying number of compile jobs
• Hackbench : communication via pipes between group of processes
• mutilate : load generator for memcached, with high request rate
• netperf-unix : two communicating tasks, no pinning
• sysbenchcpu : the process-based CPU stressing workload of sysbench
• sysbenchthread : the thread-based CPU stressing workload of sysbench
• sysbench : the database workload

Full report:
https://lore.kernel.org/lkml/277737d6034b3da072d3b0b808d2fa6e110038b0.camel@suse.com/

https://lore.kernel.org/lkml/277737d6034b3da072d3b0b808d2fa6e110038b0.camel@suse.com/

DISCLAIMER:
These are the results of an ongoing effort.

If some of the numbers appear weird and difficult to
understand or explain… It’s because they actually are!!

Analysis of results and related data is still being carried on.
Stay tuned for updates.

Benchmarks Results

Baremetal No HT Patch
applied

Core-sched

1 thread -12.34% -3.45% -2.34%

4 threads

7 threads

8 threads -1567.8%

Means that without HT
we are slower than with
HT, by 12.34%.This tells
us how sensitive to HT a
benchmark is

NB: Large negative
(< -100%) values mean that
performance are worse by
1567.8% (non that we are
going back in time very fast!)

This would mean that
core scheduling has “less
worse” performance
than HT disabled, so it is
a good thing (for core
scheduling)

Overhead: how slower we are, just with
the patches applied and core scheduling
not being used, wrt without any
patches. Ideally, this would be 0%. If
positive, means just applying the
patches improves performance.

Means that with core
scheduling, we are slower
than with HT and without
core scheduling by 2.34%.
Ideally, this would be 0%,
and higher than the ‘no
HT’ column.

Core-Scheduling in Xen: Performance
1x

 V
M

, 8
 v

CP
U

Core-Scheduling in Xen: Performance
1x

 V
M

, 8
 v

CP
U

Overhead not too bad,
except than for Hackbench
and Netperf, where it varies

Core scheduling
does better than
disabling HT (not in
Stream and
netperf, though)

Core-Scheduling in Xen: Performance
2x

 V
M

s,
 8

 v
CP

U
s

ea
ch

 (o
ve

rl
oa

d)

Core-Scheduling in Xen: Performance
2x

 V
M

s,
 8

 v
CP

U
s

ea
ch

 (o
ve

rl
oa

d)
Even with overcommit,
overhead stays low enoug
(except with Netperf)

Under overcommit,
core scheduling is
always better than
disabling HT

Core Scheduling Performance: hackbench
Baremetal No HT Patch

applied
Core-sched

1 group -53.57% 2.97% -162.95%

5 groups -38.20% 0.12% -768.32%

24 groups -16.45% -1.54% -1372.10%

32 groups -27.71% -0.63% -1597.64%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 group -148.80% 1.95% -0.27%

5 groups 2.23% 9.79% 14.94%

24 groups -24.67% 8.15% -11.92%

32 groups -8.64% 6.71% 10.72%

2x VM,
8 vCPUs

No HT Patch
applied

Core-
sched

1 group -217.43% -147.64% -205.78%

5 groups -48.96% -13.78% -19.03%

24 groups -55.35% -33.21% -30.90%

32 groups -62.32% -44.62% -43.27%

VM,
4 vCPUs

No HT Patch
applied

Core-
sched

1 group 1.80% 15.47% 6.58%

5 groups -0.21% 16.45% 4.06%

7 groups 5.69% 2.48% 10.10%

16 groups -1.82% 7.65% 14.75%

Core Scheduling Performance: hackbench
Baremetal No HT Patch

applied
Core-sched

1 group -53.57% 2.97% -162.95%

5 groups -38.20% 0.12% -768.32%

24 groups -16.45% -1.54% -1372.10%

32 groups -27.71% -0.63% -1597.64%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 group -148.80% 1.95% -0.27%

5 groups 2.23% 9.79% 14.94%

24 groups -24.67% 8.15% -11.92%

32 groups -8.64% 6.71% 10.72%

2x VM,
8 vCPUs

No HT Patch
applied

Core-
sched

1 group -217.43% -147.64% -205.78%

5 groups -48.96% -13.78% -19.03%

24 groups -55.35% -33.21% -30.90%

32 groups -62.32% -44.62% -43.27%

VM,
4 vCPUs

No HT Patch
applied

Core-
sched

1 group 1.80% 15.47% 6.58%

5 groups -0.21% 16.45% 4.06%

7 groups 5.69% 2.48% 10.10%

16 groups -1.82% 7.65% 14.75%

Whaaat?!?!

At least this is
good (compare
with first column,
i.e., ‘no HT’)

Under
overcommit,
overhead is high

Core Scheduling Performance: sysbench
Baremetal No HT Patch

applied
Core-sched

1 thread -6.07% 4.01% -4.37%

4 threads 5.93% 6.83% 0.16%

7 threads -8.95% -0.35% 2.62%

8 threads 3.08% 19.19% 14.72%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread 4.95% -4.38% -26.91%

4 threads 16.14% 0.67% -20.76%

7 threads 14.17% 30.14% -20.11%

8 threads -19.96% -19.70% -37.34%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread -8.34% 12.68% -50.73%

4 threads -46.29% -27.06% -66.91%

7 threads -50.93% -18.41% -68.46%

8 threads -52.64% -28.65% -59.74%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 thread 43.63% -21.90% -18.30%

2 threads -0.69% -0.97% -14.80%

3 threads 25.45% 5.60% 11.88%

-

Core Scheduling Performance: sysbench
Baremetal No HT Patch

applied
Core-sched

1 thread -6.07% 4.01% -4.37%

4 threads 5.93% 6.83% 0.16%

7 threads -8.95% -0.35% 2.62%

8 threads 3.08% 19.19% 14.72%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread 4.95% -4.38% -26.91%

4 threads 16.14% 0.67% -20.76%

7 threads 14.17% 30.14% -20.11%

8 threads -19.96% -19.70% -37.34%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread -8.34% 12.68% -50.73%

4 threads -46.29% -27.06% -66.91%

7 threads -50.93% -18.41% -68.46%

8 threads -52.64% -28.65% -59.74%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 thread 43.63% -21.90% -18.30%

2 threads -0.69% -0.97% -14.80%

3 threads 25.45% 5.60% 11.88%

-

So, baremetal
is fine

Virtualization, not so
much!

Core Scheduling Performance: STREAM
Baremetal No HT Patch

applied
Core-sched

copy -0.51% -0.43% -0.75%

scale -1.05% -1.52% -1.32%

add 0.38% 1.60% -0.09%

triad 0.12% -0.09% -0.06%

VM,
8 vCPUs

No HT Patch
applied

Core-sched

copy -1.17% -0.93% -3.15%

scale 1.24% 0.78% 0.89%

add 1.64% 1.84% 1.82%

triad -0.12% 0.29% 0.33%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

copy -26.18% -9.26% -14.31%

scale -31.55% -15.72% -17.07%

add -29.29% -19.45% -20.46%

triad -26.69% -21.74% -20.33%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

copy 0.76% 0.37% -1.03%

scale 2.40% 2.32% 0.47%

add 1.12% 0.03% -1.58%

triad 0.23% -0.03% -0.66%

Core Scheduling Performance: STREAM
Baremetal No HT Patch

applied
Core-sched

copy -0.51% -0.43% -0.75%

scale -1.05% -1.52% -1.32%

add 0.38% 1.60% -0.09%

triad 0.12% -0.09% -0.06%

VM,
8 vCPUs

No HT Patch
applied

Core-sched

copy -1.17% -0.93% -3.15%

scale 1.24% 0.78% 0.89%

add 1.64% 1.84% 1.82%

triad -0.12% 0.29% 0.33%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

copy -26.18% -9.26% -14.31%

scale -31.55% -15.72% -17.07%

add -29.29% -19.45% -20.46%

triad -26.69% -21.74% -20.33%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

copy 0.76% 0.37% -1.03%

scale 2.40% 2.32% 0.47%

add 1.12% 0.03% -1.58%

triad 0.23% -0.03% -0.66%

Not particularly HT
sensitive benchmark...

… still core scheduling does no harm under baremetal
and VM normal load, and helps a bit under overcommit

Core Scheduling Performance: mutilate
Baremetal No HT Patch

applied
Core-sched

1 thread -0.32% 1.04% -6.41%

3 threads -12.43% 0.74% -8.54%

5 threads -8.53% -1.12% -18.16%

8 threads 21.22% 1.67% -12.74%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread 25.50% 27.51% 26.19%

3 threads -38.95% 8.47% 9.98%

5 threads -87.35% 3.10% -0.92%

8 threads -66.04% 1.66% -1.84%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread -33.43% -26.57% -23.54%

3 threads -93.59% -54.19% -58.99%

5 threads -97.21% -82.43% -81.25%

8 threads -86.24% -61.20% -61.65%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 thread 22.06% 22.30% 22.05%

5 thread 14.89% 15.54% 17.14%

4 threads 15.50% 23.72% 24.26%

-

Core Scheduling Performance: mutilate
Baremetal No HT Patch

applied
Core-sched

1 thread -0.32% 1.04% -6.41%

3 threads -12.43% 0.74% -8.54%

5 threads -8.53% -1.12% -18.16%

8 threads 21.22% 1.67% -12.74%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread 25.50% 27.51% 26.19%

3 threads -38.95% 8.47% 9.98%

5 threads -87.35% 3.10% -0.92%

8 threads -66.04% 1.66% -1.84%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 thread -33.43% -26.57% -23.54%

3 threads -93.59% -54.19% -58.99%

5 threads -97.21% -82.43% -81.25%

8 threads -86.24% -61.20% -61.65%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 thread 22.06% 22.30% 22.05%

5 thread 14.89% 15.54% 17.14%

4 threads 15.50% 23.72% 24.26%

-

Baremetal is regressing

Virt, both normal load
and overcommitted,
improves

Core Scheduling Performance: Kernbench
Baremetal No HT Patch

applied
Core-sched

-j2 1.60% 0.07% 0.30%

-j4 5.99% 0.39% -0.31%

-j8 -30.75% 0.62% -5.16%

-j16 -33.59% -0.32% -6.04%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

-j2 11.91% 10.59% 10.32%

-j4 3.11% 8.95% 7.83%

-j8 -35.63% 2.07% -1.55%

-j16 -33.52% 0.68% -2.17%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

-j2 -64.26% -43.70% -53.90%

-j4 -127.19% -48.62% -64.77%

-j8 -162.31% -70.14% -79.98%

-j16 -154.92% -63.02% -65.59%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

-j2 10.85% 11.42% 10.27%

-j4 -3.44% 10.79% 9.93%

-j8 10.32% 10.82% 10.18%

-

Core Scheduling Performance: Kernbench
Baremetal No HT Patch

applied
Core-sched

-j2 1.60% 0.07% 0.30%

-j4 5.99% 0.39% -0.31%

-j8 -30.75% 0.62% -5.16%

-j16 -33.59% -0.32% -6.04%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

-j2 11.91% 10.59% 10.32%

-j4 3.11% 8.95% 7.83%

-j8 -35.63% 2.07% -1.55%

-j16 -33.52% 0.68% -2.17%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

-j2 -64.26% -43.70% -53.90%

-j4 -127.19% -48.62% -64.77%

-j8 -162.31% -70.14% -79.98%

-j16 -154.92% -63.02% -65.59%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

-j2 10.85% 11.42% 10.27%

-j4 -3.44% 10.79% 9.93%

-j8 10.32% 10.82% 10.18%

-

Both baremetal
and in VM, when
reaching
saturation, core
scheduling is very
effective

Significant overhead, but overcommit results
are quite good

Core Scheduling Performance: sysbench-cpu
Baremetal No HT Patch

applied
Core-sched

1 task -0.03% 0.00% 0.01%

5 tasks -20.64% 0.00% -0.24%

7 tasks -61.24% 0.00% -0.92%

16 tasks -81.29% -0.13% -2.51%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 task 7.41% 7.45% 7.44%

5 tasks -17.88% 3.43% 2.94%

7 tasks -61.72% 0.91% 0.12%

16 tasks -83.89% 0.04% -3.28%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 task -3.67% -11.70% -40.93%

5 tasks -130.24% -17.96% -30.65%

7 tasks -205.34% -51.79% -57.70%

16 tasks -248.65% -70.56% -72.76%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 task 6.62% 7.43% 7.44%

3 tasks 4.82% 5.40% 5.42%

5 tasks 3.53% 5.35% 5.44%

8 tasks 3.30% 5.33% 5.45%

Core Scheduling Performance: sysbench-cpu
Baremetal No HT Patch

applied
Core-sched

1 task -0.03% 0.00% 0.01%

5 tasks -20.64% 0.00% -0.24%

7 tasks -61.24% 0.00% -0.92%

16 tasks -81.29% -0.13% -2.51%

1 VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 task 7.41% 7.45% 7.44%

5 tasks -17.88% 3.43% 2.94%

7 tasks -61.72% 0.91% 0.12%

16 tasks -83.89% 0.04% -3.28%

2x VM,
8 vCPUs

No HT Patch
applied

Core-sched

1 task -3.67% -11.70% -40.93%

5 tasks -130.24% -17.96% -30.65%

7 tasks -205.34% -51.79% -57.70%

16 tasks -248.65% -70.56% -72.76%

VM,
4 vCPUs

No HT Patch
applied

Core-sched

1 task 6.62% 7.43% 7.44%

3 tasks 4.82% 5.40% 5.42%

5 tasks 3.53% 5.35% 5.44%

8 tasks 3.30% 5.33% 5.45%

Baremetal, VM normal load and VM
overcommit all doing great… Am I
dreaming or what?!?!

Conclusions

Conclusions

• Core scheduling is necessary, if we want to be able to mitigate some
vulnerabilities (which badly affect virtualization, e.g., L1TF)

• Mitigating vulnerabilities is not the only use case for Core Scheduling in
Virtualization

• Core Scheduling performs better than disabling HyperThreading in
overcommitted scenarios

• Efficiently implementing Core Scheduling in Linux is complex, and the
current patches still need some work

Thanks!

 Questions?

 Question for you: is core scheduling good or bad?
 (no, you can’t answer “it depends” ;-P)

