
Bring QEMU to Micro Service World

Zhang Yulei <yuleixzhang@tencent.com>
Xiao Guangrong <xiaoguangrong@tencent.com>

Agenda

• Background

• QEMU Adaption

• Future works

Tencent Cloud

25 Regions

53 Availability zones

1,100+ PoP

1,000,000+ Servers

1,024+ PB Storage

Tencent Cloud can serve globally with large scale of resources

Powerful Network Highly Customized Global Coverage Ecosystem

Tencent Cloud Clients

Video

Internet

Finance

Retail

EducationGovernment

Healthcare

Manufacturing

Gaming

Digital
Economy

Tencent cloud has been contributing to 100000+ clients from different industries for digitalization

Background

• Aim to micro service

• Fast bootup

• massive deployment

• Short life cycle

• Less memory footprint

• High level of security

• Current solutions
• Firecrack, crosvm, RustVMM based hypervisor

Why QEMU adaption?

Good for devops

Good for developer's knowledges

QEMU Adaption

Pro
1. Strong hardware isolation
2. Rich existing features

Con
1. Redundant code path
2. Slow guest start up within seconds
3. More resource used

Our Solution

QEMU Basepoint

 Bypass Guest initialization

 Bypass QEMU initialization

QEMU basepoint: Bypass Guest init.

Leverage the existing migration strategy to create the basepoint template
which could be used to restore the Guest instead of booting guest kernel
every time.

Base VM
Basepoint

mode
(VM Memory

is shared)

Basepoint
template

Boot up

migrate "exec:cat > /dev/shm/basepoint"

• Base on shared memory migration with minimum system resource
• (Inspirit from kata container)

QEMU basepoint: Bypass Guest init. (Cont.)

Restore the guest VM from the basepoint image will significantly speed up
the guest boot up which eliminates the cost for guest kernel boot up.

Guest VM

migrate_incoming "exec:cat /dev/shm/basepoint"

Guest VM
Pause status

(shared
memory is
turned off)

Boot up

Basepoint
template

Config
Guest

QEMU basepoint: Bypass QEMU init.

• Besides skipping the guest kernel boot period, QEMU initial code
will introduce appreciable latency.

• Fork the QEMU process after Base VM boots up would be able to
further speed up the micro service instance start up

QEMU basepoint: Bypass QEMU init. (Cont.)

Base VM Basepoint
mode

basepoint

VM1

VM2

VM3

template
fork

fork

fork

fork

Micro Service
VM1

Micro Service
VM2

Micro Service
VM3

restore

restore

restore

Boot up

cpu/device/m
emory/disk

create
QEMU initialization period

KVM Module independent

VM startup period

Original Qemu with
Optimized linux kernel

+ Bypass kernel init + Bypass Qemu init

Boot up (ms) 500 150 35

Security

Security approach
Enhance the Guest security after restore from the same template

• Use virtio-rng as random number generator for the guest

• Reseed the entropy for random number generator after restore the
guest from basepoint template

• However, kernel randomness (e.g, KASLR) still does not work…
• Each tenant has a dedicated template

Future works

Future works

• Optimize the current QEMU code

• QEMU modulization

• Guest kernel security enhancement

1. Based on QEMU code to achieve the micro service requirement to fast

deploy intensive micro services in a extremely short period.

2. With minimum modifications and easily adapt to the existing

framework in public cloud.

3. Our solution, QEMU baspoint, bypass QEMU & Guest init. completely.

Summary

Q&A

