
Boosting Dedicated Instance via KVM Tax Cut

KVM FORUM 2019
Wanpeng Li

wanpengli@tencent.com

Agenda

Exitless Timer
Exitless IPI
Per-VM cap to disable exits
KVM_HINTS_DEDICATED performance hint
Adaptive tune advance lapic timer
Adaptive halt-polling in guest/host

Exitless Timer

Motivation
both arm timer and timer fire incur vmexits
dedicated instance encounter performance jitter

Set APIC timer

emulate APIC
access

timer
handler

vIRQ
injection

timer handler

VM Exit
VM Enter

VM Exit

VM Enter

Guest

Host

timer
interrupt

Exitless Timer

Injection exitless
offload lapic timer to the housekeeping cpus
inject expired timer interrupt via posted interrupt
fine tuned host via enable nohz_full, disable mwait/pause/hlt vmexits
etc

Exitless Timer
Normal KVM interrupt delivery

Housekeeping cpus delivery interrupt via posted-interrupt

Exitless Timer

Performance data

Exitless IPI

Each writes to ICR register will cause a vmexit in x2apic physical mode,
multicast IPIs and “Function Call interrupts” make it worse when scaling to
large VMs. Use a hypercall to send IPIs to multiple vCPUs.

 Exitless IPI

time-consuming

less is better

Evaluation Environment:
Hardware : Xeon Skylake 2.5GHz, 2 sockets, 40 cores, 80 threads
VM : 80 vCPUs
Test case : IPI microbenchmark

154%

22%

Per-VM cap to disable exits

Enable KVM_CAP_X86_DISABLE_EXITS capability on a VM
provides userspace with a way to no longer intercept
MWAIT/HLT/PAUSE LOOP/read cstate msrs for improved
latency in some workloads

19%

KVM_HINTS_DEDICATED performance hint

Allows a guest to enable optimizations when running on
dedicated pCPUs

choose qspinlock
native tlb shootdown
disable pv sched yield
enable guest halt-polling

12%

Adaptively tune advance lapic timer

Hidden hypervisor overhead between lapic timer fires and
before vmentry

Adaptively tune advance lapic timer

Adaptive tune step by step smoothly
reduce advance value when it is too early
increase advance value when it is too late

Adaptive halt-polling in host

Message passing workloads
Usually, anything that frequently switches between running and idle
Event-driven workloads

LAMP servers
Memcache
Redis
SAP HANA

Inter-process communication
TCP_RR (benchmark)

 Adaptive halt-polling in host

Message passing workloads
Microbenchmark: Netperf TCP_RR

Client and Server ping-pong 1-byte of data over an established TCP connection
Performance: Latency of each transaction

One transaction:

 Adaptive halt-polling in host

Message passing workloads
Frequent transitions between running and idle, spends little time

processing each message

Adaptive halt-polling in host
When a guest vcpu has ceded, the host kernel polls for wakeup
conditions before giving up the cpu to the scheduler.
Adaptive polling

The poll duration can be adaptively shrink/grow according to the history
behavior

grow halt_poll_ns progressively when short halt is detected
shrink halt_poll_ns aggressively when long halt is detected

Adaptive halt-polling in host

Performance data

28%

Adaptive halt-polling in guest

cpuidle_haltpoll governor and haltpoll cpuidle driver
pros

avoid sending an IPI when performing a wakeup
 vmexit cost can be avoided

cons
 polling is performed even with other runnable tasks in the host

But now, it is enabled when hypervisor give dedicated performance hint

Adaptive halt-polling in guest

Performance data

Reference

https://lkml.org/lkml/2019/7/5/712
https://lkml.org/lkml/2018/7/23/108
https://lkml.org/lkml/2018/3/12/359
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/co
mmit/?id=b51700632e0e53254733ff706e5bdca22d19dbe5
https://lkml.org/lkml/2018/2/12/1036
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/co
mmit/?id=3b8a5df6c4dc6df2ab17d099fb157032f80bdca2
https://lkml.org/lkml/2015/9/3/615
https://www.spinics.net/lists/kvm/msg190684.html

 Q/A？

