
1

Protect Data of Virtual Machines with

MKTME on KVM

Kai Huang @ Intel Corporation

kai.huang@intel.com

KVM Forum 2018

2

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Agenda

• Background & MKTME Introduction

• MKTME Use Cases

• MKTME Enabling & Status

4

Background: Trusted VM in Cloud

VM protection by using encryption

• VM encrypted ‘at-rest’, ‘in-transit’ and ‘runtime’.

• There has been existing technologies for ‘at-

rest’ and ‘in-transit’ encryption

• Qemu TLS support for live migration

• Qemu encrypted image support

• VM runtime encryption requires hardware

memory encryption support

• AMD
®

SME/SEV

• Intel
®

MKTME

Launch VM on ‘Trustiness Verified’ Host

• Trusted hardware, SW stack, etc.

• HW based root-of-trust

• Attestation service

Cloud

Orchestrator

Cloud

Agent

VM Image

Repo

Compute Node

Intel® Arch

VM

Launch

Cloud

Agent

Compute Node

Intel® Arch

VM

Launch
Live Migration

❶ At-rest

❷ Runtime
❸ In-transit

Typical VM Lifecycle in Cloud

5

TME & MKTME Introduction

• New AES-XTS engine in data path to external

memory bus.

• Data encrypted/decrypted on-the-fly when

entering/leaving memory.

• AES-XTS uses physical address as “tweak”

• Same plaintext, different physical address -> different

ciphertext.

• TME (Total Memory Encryption)

• Full memory encryption by TME key (CPU generated).

• Enabled/Disabled by BIOS.

• Transparent to OS & user apps.

• MKTME (Multi-key Total Memory Encryption)

• Memory encryption supporting using multiple keys.

• Use upper bits of physical address as keyID (see next)

6

MKTME KeyIDs

• Repurpose upper bits of physical address as KeyID as shown below.

• Reduces useable physical address bits.

• Different keyIDs can refer to the same physical address.

• Architecturally upto 2^15-1 keyIDs (15 keyID bits).

• Reported by MSR. Configured by BIOS.

• KeyID 0 is reserved as TME’s key (not useable by MKTME).

• New PCONFIG instruction to program keyID w/ associated key (see next)

7

MKTME KeyID Programming Overview

New Ring-0 instruction PCONFIG to program the KEYID and associated key

• Package scoped

• Supports programming keyID to 4 modes:

• Using CPU generated random ephemeral key (invisible to SW)

• SW can provide entropies for key and tweak, which will be XOR-ed by CPU.

• Using SW provided key (tenant’s key)

• No encryption – plaintext domain

• Clearing a key (using TME’s key effectively)

• Allows SW to specify crypto algorithms

• Only AES-XTS-128 for initial server intercept

7

8

VM Protection & Isolation With MKTME

• Protection

• Use keyID to encrypt VM memory at runtime

• Isolation

• Use different keyIDs for different VMs

• Software Enabling

• For CPU access, SW sets keyID at PTEs

• IA page table (host)

• EPT (KVM)

• For Device access (DMA)

• w/ IOMMU: Set keyID to IOMMU page table

• Physical DMA: Apply keyID to PA directly

9

Recap -- Highlights of MKTME

Guests continue to run “without modifications” in MKTME guest:

• Encrypted with 1) CPU-generated ephemeral key, or 2) the one provided by API (“tenant-

controlled keys”)

• Virtio, including optimization (direct access to guest memory by kernel) continues to work

• Direct I/O (including accelerators, FPGA) assignment (including SR-IOV VFs) is available

• Live migration can be supported (among platforms that support MKTME)

• vNVDIMM can be supported w/ limitation (because of physical address “tweak”)

• Host DIMM configuration cannot be changed cross reboots.

• Qemu DIMM & vNVDIMM configuration cannot be changed cross VM reboots.

10

Agenda

• Background & MKTME Introduction

• MKTME Use Cases

• MKTME Enabling & Status

11

MKTME Enabled Use Cases

1. Launch Tenant VMs with runtime protection with CPU generated keys

• Let CSP handle the keys

• VM image provided by CSP

2. Launch Tenant VMs with at-rest and runtime protection with full tenant-control keys

• VM image encrypted at-rest with tenant-specific keys

• VM memory isolation with tenant-specific keys

• Keys fully controlled by tenant

• Trustiness verified host

• Additional: integrity verification of VM image

Use-case Extension:

KeyID Sharing for all VMs launched by single tenant with the same tenant-key (or CPU generated key).

12

Cloud

Agent

HARDWARE

Intel® TXT / TPM

Intel® MKTME

HYPERVISOR

(Qemu/KVM)

VM

Policy

Agent

MKTME ephemeral key

DRAM*

Keyid 3

Keyid 3

Keyid 0

Keyid 0

Keyid 3

Cloud

Manager

1

2

3

Image

Repo

VM Launch w/ CPU Generated Keys

TME key

VM Launch

Policy Enforcement

VM Launch
w/ KeyID

CSP Controlled

VM Launch w/
• CPU generated key

• CSP provided VM image

Security Properties
• w/ VM runtime protection

• w or w/o at-rest and in-transit protection

• No Host Trustiness Verification

13

Cloud

Agent

Attestation

Service

HYPERVISOR

(Qemu/KVM)

VM

DRAM*

KeyID 3

KeyID 3

KeyID 1

KeyID 1

KeyID 3

Cloud

Manager

2

3

4

Image

Repo

VM Launch w/ Tenant Controlled Keys

1Trustiness
Verification

VM Launch

Policy Enforcement

Key
Server

Upload VM image encrypted
w/ tenant key

0

Request Tenant-key
Return wrapped key

Wrapped tenant key

Tenant key

MKTME ephemeral

key

VM Launch
w/ KeyID

VM Launch w/
• Tenant provided key

• Tenant provided encrypted VM image

• Tenant controlled key server

• Trustiness verified host

• VM image integrity verified

• Use TPM to wrap/unwrap tenant-key

CSP ControlledTenant Controlled

Security Properties
• w/ VM runtime protection

• w/ VM at-rest protection

• w/ or w/o in-transit protection

• w/ Host trustiness verification

• w/ VM image integrity verification

Policy

Agent

TME key

HARDWARE

Intel® TXT / TPM

Intel® MKTME

14

KeyID Sharing Among VMs

Compute Node

Cloud SW

mKey API KVM

MktmePolicy {

tenant_id: <UUID>,

key_type: “ephemeral” | “persistent”,

key_server: https://...,

allow_to_share: “yes” | “no”

}

Qemu

KeyIDPolicy KeyID VMs

Policy1: <tenant1, “ephemeral”> keyID1 VM1, VM2..

Policy2: <tenant2, “persistent”, xxxxxx> keyID2 VM3

New VM Launch

w/ MktmePolicy

Example: KeyID sharing is based on KeyIDPolicy: <tenant_id, key_type, tenant_key>

Cloud SW:

• Maintains ‘KeyIDPolicy-to-KeyID’ table

• Makes keyID sharing decision according to the table

• Updates the table on VM launch and teardown

mKey API: MKTME key management API

Apply keyID to

VM memory

Launch VM

w/ keyID

Cloud SW makes decision whether to share or not.

Launch VM

https://.../

15

Agenda

• Background & MKTME Introduction

• MKTME Use Cases

• MKTME Enabling & Status

16

MKTME Enabling

Overview

• Overall:

• Setup the same keyID in both

Qemu host page table and

EPT/shadow page table

• Passthrough:

• Setup keyID to IOMMU

• Virtio/vhost-kernel:

• kmap() w/ keyID

• DMA w/ keyID

• Live Migration:

• DMA w/ keyID

IA-PT
KeyIDs

for Host

EPT

VT-d

KeyIDs

for guest

KeyIDs

for DMA

KVM

Key/KeyID

Management

MKTME Engine

Core-MM code

with KeyID

Setting KeyIDs

in EPT

VM

Guest Memory

QEMU

Device

(NIC, SCSI, etc)

mkey APIs

Guest memory

with KeyID

VFIO/IOMMU

with KeyID

KeyIDs

Encrypted

Memory with

KeyID

PCONFIG

New Code

Vhost-kernel

Direct I/O Virtio/Vhost Live Migration

DMA with

KeyID

Cloud

SW

Launch VM

w/ KeyID

KeyIDs

for DMA

17

MKTME Enabling Overview -- Recap

• Host kernel

• Key/keyID Management APIs

• Use kernel key retention services infrastructure, and add new MKTME key type.

• Return ‘key_serial_t’ (handle) to userspace instead of actual keyID.

• Core-MM keyID support

• VMA, page table keyID manipulation

• Setup keyID to PTE in #PF

• New syscall to encrypt process memory region by given MKTME key handle.

• encrypt_mprotect(addr, size, prot, key_handle);

• VFIO/IOMMU keyID support, DMA keyID support.

• KVM

• Setup keyID in EPT/Shadow MMU

• Qemu

• Receive MKTME key handle from Cloud SW

• Apply MKTME key handle to all guest memory (by calling new syscall)

18

MKTME Enabling – Qemu Modification

• New “mktme-guest” object to carry MKTME handle

• -object mktme-guest,id=mk0,handle=$mktme-handle

• Align with AMD SEV’s “sev-guest” object

• Reuse machine property “memory-encryption” to indicate VM is associated w/ keyID.

• Consistent with AMD SEV, who introduced ‘memory-encryption’ property

Example: Launch VM w/ $mktme-handle

#qemu-system-x86_64 … -machine memory-encryption=mk0 -object mktme-guest,id=mk0,handle=$mktme-handle

Example: Put into a small script, combined w/ adding MKTME key

#!/bin/bash

serial=`keyctl add mktme k1 “type=cpu algorithm=aes-xts-128” @us`

qemu-system-x86_64 –enable-kvm –cpu host –smp 2 –m 4G –machine memory-encryption=mk0 \

-object mktme-guest,id=mk0,handle=${serial}

19

MKTME Enabling Current Status

• Specification has been published [1]

• Core kernel enabling status

• Some preliminary patches have been upstreamed

• Feature emulation (CPUID, MSR); PCONFIG

• Some RFCs have been sent to community for feedback

• New MKTME key type implementation

• Other components WIP internally

• Core-MM keyID support; IOMMU keyID support; DMA keyID support; …

• KVM/Qemu enabling status

• PoC has been done to prove MKTME actually works.

• Depending on core kernel parts ready for formal patches.

[1] https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

THANKS

	Protect Data of Virtual Machines with MKTME on KVM
	Legal Disclaimer
	Agenda
	Background: Trusted VM in Cloud
	TME & MKTME Introduction
	MKTME KeyIDs
	MKTME KeyID Programming Overview
	VM Protection & Isolation With MKTME
	Recap -- Highlights of MKTME
	Agenda
	MKTME Enabled Use Cases
	VM Launch w/ CPU Generated Keys
	VM Launch w/ Tenant Controlled Keys
	KeyID Sharing Among VMs
	Agenda
	MKTME Enabling Overview
	MKTME Enabling Overview -- Recap
	MKTME Enabling – Qemu Modification
	MKTME Enabling Current Status
	THANKS

