
1

Shared Virtual Addressing in KVM

Yi Liu (yi.l.liu@intel.com)

Jacob Pan (jacob.jun.pan@intel.com)

KVM Forum 2018

2

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Shared Virtual Addressing(SVA)

CPU page

tables

IOMMU page

tables

Host/Physical Memory

VA IOVA

PA PA

OS

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVA

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

CPU Device

4

Shared Virtual Addressing(SVA)

CPU page

tables

CPU page

tables

Host/Physical Memory

VA VA

PA PA

OS

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVA

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

CPU Device

Previously called “Shared Virtual Memory”

5

SVA on Intel® VT-d

• Process Address Space ID (PASID)
 Identify process address space

• First-level/Second-level translation
 Supports different usages (IOVA/SVA) by different translation types

• Translation Types
 First-Level translation

 Second-Level translation

 Nested translation

 Pass-Through (address translation bypassed)

• Intel® VT-d 3.0 introduced Scalable Mode
 SVA and Intel® Scalable I/O Virtualization technology are orthotropic

6

SVA on Intel® VT-d (Cont.)

• Nested Translation
 Use both first-level and second-level for address translation

 Enable SVA in virtualization environment

 First-level: GVA->GPA

 Second-level: GPA->HPA

GPA

First Level page table Second Level page table

HPAGVA

• Most vendor supports nested translation for

SVA usage in Virtual Machine

7

vSVA on Intel® VT-d

Guest CPU

page tables

Guest CPU

page tables

Host/Physical Memory

GVA GVA

HPA HPA

OS

Managed

EPT tables VT-d tables
VMM

Managed

CPUs

Root Complex

IOMMU

M
M

U

Non-SVA

capable

devices

Discrete

Devices

Integrated

Devices

memory

(E.g.: Legacy

Devices)

(E.g.: PCI-E

attached devices)

(E.g.: Processor

Graphics)

GPA GPA

CPU Device

1st level

2nd level

8

Enable SVA in VM

• Need a virtual IOMMU with SVA capability
 Proper emulation according to IOMMU spec (e.g. Intel® VT-d specification)

 either fully-emulated or virtio-based IOMMU

• Notification for guest translation structure modifications
 Notification mechanism is vendor specific

 For Intel® VT-d

 “caching-mode”: explicit cache invalidation is required for any translation structure
change in software

• Enable nested translation on physical IOMMU for given
PASID

9

SVA Architecture in KVM

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Qemu

vIOMMU

• Qemu
 vIOMMU emulation is in Qemu

• VFIO: Virtual Function I/O
 Program host IOMMU via VFIO

• IOMMU driver
 New APIs exposed to VFIO for guest

SVA

10

SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

Translation Cache

Invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

11

SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU

page table cache

invalidation to host

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

Translation Cache

Invalidation

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

12

SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

13

SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation
PRQ

Response

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

14

SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU

page table cache

invalidation to host

• Page fault reporting

and servicing

Guest

Host

User

Host

Kernel

HW

VFIOIOMMU

Driver

vIOMMU

Driver

IOMMU

Fault

vIOMMU

Fault

Translation Cache

Invalidation
PRQ

Response

CPU

page table

cache

invalidation

Bind

PASID

IOMMU

Qemu

vIOMMU

Neutral Kernel APIs for both emulated and

virtio-based vIOMMUs

15

Changes to Qemu/VFIO/IOMMU

• Qemu
 Vendor specific vIOMMU emulation

 Capture guest IOMMU translation modifications and program host IOMMU via VFIO IOCTL

• VFIO: Virtual Function I/O
 New IOCTL will be introduced:

 VFIO_IOMMU_BIND_PROCESS
Binding to host CPU page table

 VFIO_IOMMU_BIND_GUEST_PGTBL
Binding to guest CPU page table

 VFIO_IOMMU_BIND_GUEST_PASID_TBL
Binding to guest PASID Table

 VFIO_IOMMU_SVA_INVALIDATE
Invalidate tlb for guest

 VFIO_DEVICE_DMA_FAULT_FD_SET
Set fault eventfd for notifying userspace (Qemu)

 VFIO_DEVICE_GET_DMA_FAULT_INFO
Get dma fault info to userspace (Qemu)

• IOMMU driver
 Jacob will introduce detail on it

16

Upstream Status (Qemu)

• Qemu vSVA enabling has two parts
 vIOMMU emulation

 Earliest RFC patch for vSVA back to 2017-April

 Notification framework between vIOMMU device-model and VFIO within
Qemu

 Yi Liu: Notifier framework in v3, proposed PCISVAOps for
communication between vIOMMU emulator and VFIO

 Eric Auger: vSMMUv3/pSMMUv3 2 stage VFIO integration v2

 Shares the notification framework work

• TODO:
 consolidate the common part between different tracks

 Hardware IOMMU capability query interface

 vIOMMU should not report capabilities with no host support if VM has
assigned devices

https://www.spinics.net/lists/kvm/msg148798.html
http://qemu.11.n7.nabble.com/PATCH-v3-00-12-Introduce-new-iommu-notifier-framework-for-virt-SVA-td555166.html
https://patchwork.kernel.org/cover/10609261/

17

Upstream Status (Kernel)

• IOMMU/VFIO extension for virtual SVA
 Earliest RFC patch for vSVA support

 IOMMU APIs & VT-d in v5 by Jacob Pan & Yi Liu
(https://lkml.org/lkml/2018/5/11/605)

 Reuse and extend the above IOMMU API with ARM SMMU support by Eric Auger
(https://lkml.org/lkml/2018/9/18/1087)

• Native SVA support
 Generic IOMMU/VFIO API and ARM support (Jean-Philippe Brucker, ARM)

(https://patchwork.kernel.org/patch/10608303/,
https://patchwork.kernel.org/patch/10394831/

• Shared requirements in the two tracks
 binding PASID, fault reporting

• Dependent changes
 VT-d v3 support by Lu, Baolu (https://lkml.org/lkml/2018/10/7/54)

https://lists.gnu.org/archive/html/qemu-devel/2017-04/msg04946.html
https://lkml.org/lkml/2018/5/11/605
https://lkml.org/lkml/2018/9/18/1087
https://patchwork.kernel.org/patch/10608303/
https://patchwork.kernel.org/patch/10394831/
https://lkml.org/lkml/2018/10/7/54

18

Terminology puzzle

PASID SubstreamID

PASID table Context

descriptor table

1st & 2nd level

translation
Stage 1 & 2

translation

Device context table Stream table (entry)

PCI requesterID
PCI requesterID maps

to StreamID

VT-d SMMU

19

A tale of two SVAs

Key differentiation

Features

Intel VT-d v3 ARM SMMUv3

Guest PASID allocation Allocated by host system wide

via virtual command interface

Allocated by guest in its own

space

Device PASID table Managed by host, shadowed Managed solely by guest

GPA-HPA translation 2nd level per PASID Stage 2, shared by all PASIDs

per streamID

PASID 0 Available for allocation if

RID2PASID is not enabled

Reserved for request w/o PASID

Page request/response Has private data, needs page

response w/o last page in group

(LPIG)

Support non-PCI and PCI

PRI-like stall model, no

dependency on ATS**

IOMMU domains Does not support default domain

with DMA API*

Supports default DMA domain,

can switch in/out default domain

* In progress to align with other IOMMU drivers

** All stall faults need response, faults contain more info such as which stage

20

Common

IOMMU SVA API development

IOMMU dev Fault

Color coding of patchset

PASID

management

Guest Shared Virtual Addressing

Set PASID table

Bind/unbind

PASID(guest mm)

Cache

invalidation

Bind guest MSI

Native Shared Virtual Addressing

Init/shutdown

SVA device

vSVA Intel VT-d 3

Native SVA ARM

sMMU3

vSMMUv3/VFIO 2

stage integration

PASID

management

Bind/unbind

PASID mm

VFIO

Kernel

driver

IO page

fault

21

IOMMU API extensions proposed

API Usage

iommu_set_pasid_table Guest owns PASID table. PASID managed by guest.

Iommu_bind/unbind_pasid_for_guest* Bind guest process to host allocated PASID. Host owns

system wide PASID table

iommu_cache_invalidate Translation cache invalidation passed down from guest

Iommu_report_device_fault Report IOMMU detected device faults outside IOMMU

subsystem, e.g. page request to be handled by guest.

Iommu_sva_suspend/resume_pasid()* Device switch context while maintain PASID bond

Iommu_page_response() Send page response after page request is handled

Iommu_sva_init/shutdown_device() Prepare device for SVA, e.g. enable PRI, mm_exit

notifier

Iommu_sva_bind/unbind_device() Create bond between mm, PASID, and device

PASID management APIs Management and helper function for lookup

Iommu_bind_guest_msi Reuse gIOVA doorbell in host

* not yet published

22

Summary

• Shared Virtual Addressing(SVA) enables efficient workload submission by
directly programming CPU virtual addresses on the device

• Intel® VT-d 3.0 specification extends SVA usage together with Intel® Scalable
I/O Virtualization

• Holistic enhancements are introduced cross multiple kernel/user space
components, to enable SVA virtualization in KVM

• New kernel APIs are kept neutral to support all kinds of virtual IOMMUs
(either emulated or para-virtualized)

23

Q/A

24

Backup

25

Enable SVA in VM (Cont.)
Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

GVA -> GPA

...

PASID Table

PASID Table

Guest SVA Support on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

2nd level translation (i.e. VT-d tables)

26

Enable SVA in VM (Cont.)
Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

GVA -> GPA

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

Guest SVA Support on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

2nd level translation (i.e. VT-d tables)

27

Enable SVA in VM (Cont.)
Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

GVA -> GPA

2nd level translation (i.e. VT-d tables)

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

Guest SVA Support on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

In nested

translation,

hardware treats

1st-level page

table pointer as

GPA

28

Enable SVA in VM (Cont.)
Guest VT-d

Host VT-d

RTAR

1st level translation (i.e. CPU page tables)

GVA -> GPA

GPA -> HPA

...

PASID Table

PASID Table

Save guest cpu page table pointer to host

Guest SVA Support on Intel® VT-d

Translation

structure

RTAR

...

Translation

structure

Nested

Translation

2nd level translation (i.e. VT-d tables)

29

VT-d Extended Context Mode (Deprecated)

30

VT-d Scalable Mode (New)

Key Difference: PASID is a global ID space shared by all

VMs.

ALL page-table pointers moved to PASID Granular table

