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SVA on Intel® VT-d

• Process Address Space ID (PASID)
 Identify process address space

• First-level/Second-level translation
 Supports different usages (IOVA/SVA) by different translation types

• Translation Types
 First-Level translation

 Second-Level translation

 Nested translation

 Pass-Through (address translation bypassed)

• Intel® VT-d 3.0 introduced Scalable Mode
 SVA and Intel® Scalable I/O Virtualization technology are orthotropic
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SVA on Intel® VT-d (Cont.)

• Nested Translation
 Use both first-level and second-level for address translation

 Enable SVA in virtualization environment

 First-level: GVA->GPA

 Second-level: GPA->HPA

GPA

First Level page table Second Level page table

HPAGVA

• Most vendor supports nested translation for 

SVA usage in Virtual Machine
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vSVA on Intel® VT-d
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Enable SVA in VM

• Need a virtual IOMMU with SVA capability
 Proper emulation according to IOMMU spec (e.g. Intel® VT-d specification)

 either fully-emulated or virtio-based IOMMU

• Notification for guest translation structure modifications
 Notification mechanism is vendor specific

 For Intel® VT-d

 “caching-mode”: explicit cache invalidation is required for any translation structure 
change in software

• Enable nested translation on physical IOMMU for given 
PASID
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SVA Architecture in KVM
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• Qemu
 vIOMMU emulation is in Qemu

• VFIO: Virtual Function I/O
 Program host IOMMU via VFIO

• IOMMU driver
 New APIs exposed to VFIO for guest 

SVA
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SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table
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SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table
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SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU 

page table cache 

invalidation to host

• Page fault reporting 

and servicing
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SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table
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SVA Architecture in KVM (Cont.)

• Bind PASID
 VT-d: guest CPU page table

• Forward guest CPU 

page table cache 

invalidation to host

• Page fault reporting 

and servicing
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Neutral Kernel APIs for both emulated and 

virtio-based vIOMMUs
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Changes to Qemu/VFIO/IOMMU

• Qemu
 Vendor specific vIOMMU emulation

 Capture guest IOMMU translation modifications and program host IOMMU via VFIO IOCTL

• VFIO: Virtual Function I/O
 New IOCTL will be introduced:

 VFIO_IOMMU_BIND_PROCESS
Binding to host CPU page table

 VFIO_IOMMU_BIND_GUEST_PGTBL
Binding to guest CPU page table

 VFIO_IOMMU_BIND_GUEST_PASID_TBL
Binding to guest PASID Table

 VFIO_IOMMU_SVA_INVALIDATE
Invalidate tlb for guest

 VFIO_DEVICE_DMA_FAULT_FD_SET
Set fault eventfd for notifying userspace (Qemu)

 VFIO_DEVICE_GET_DMA_FAULT_INFO
Get dma fault info to userspace (Qemu)

• IOMMU driver
 Jacob will introduce detail on it
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Upstream Status (Qemu)

• Qemu vSVA enabling has two parts
 vIOMMU emulation

 Earliest RFC patch for vSVA back to 2017-April

 Notification framework between vIOMMU device-model and VFIO within 
Qemu

 Yi Liu: Notifier framework in v3, proposed PCISVAOps for 
communication between vIOMMU emulator and VFIO

 Eric Auger: vSMMUv3/pSMMUv3 2 stage VFIO integration v2

 Shares the notification framework work

• TODO:
 consolidate the common part between different tracks

 Hardware IOMMU capability query interface

 vIOMMU should not report capabilities with no host support if VM has 
assigned devices

https://www.spinics.net/lists/kvm/msg148798.html
http://qemu.11.n7.nabble.com/PATCH-v3-00-12-Introduce-new-iommu-notifier-framework-for-virt-SVA-td555166.html
https://patchwork.kernel.org/cover/10609261/
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Upstream Status (Kernel)

• IOMMU/VFIO extension for virtual SVA
 Earliest RFC patch for vSVA support

 IOMMU APIs & VT-d in v5 by Jacob Pan & Yi Liu 
(https://lkml.org/lkml/2018/5/11/605)

 Reuse and extend the above IOMMU API with ARM SMMU support by Eric Auger 
(https://lkml.org/lkml/2018/9/18/1087)

• Native SVA support
 Generic IOMMU/VFIO API and ARM support (Jean-Philippe Brucker, ARM) 

(https://patchwork.kernel.org/patch/10608303/, 
https://patchwork.kernel.org/patch/10394831/

• Shared requirements in the two tracks
 binding PASID, fault reporting

• Dependent changes
 VT-d v3 support by Lu, Baolu (https://lkml.org/lkml/2018/10/7/54)

https://lists.gnu.org/archive/html/qemu-devel/2017-04/msg04946.html
https://lkml.org/lkml/2018/5/11/605
https://lkml.org/lkml/2018/9/18/1087
https://patchwork.kernel.org/patch/10608303/
https://patchwork.kernel.org/patch/10394831/
https://lkml.org/lkml/2018/10/7/54
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Terminology puzzle
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A tale of two SVAs

Key differentiation 

Features

Intel VT-d v3 ARM SMMUv3

Guest PASID allocation Allocated by host system wide 

via virtual command interface

Allocated by guest in its own 

space

Device PASID table Managed by host, shadowed Managed solely by guest

GPA-HPA translation 2nd level per PASID Stage 2, shared by all PASIDs 

per streamID

PASID 0 Available for allocation if 

RID2PASID is not enabled

Reserved for request w/o PASID

Page request/response Has private data, needs page 

response w/o last page in group 

(LPIG)

Support non-PCI and PCI

PRI-like stall model, no 

dependency on ATS**

IOMMU domains Does not support default domain 

with DMA API*

Supports default DMA domain, 

can switch in/out default domain

* In progress to align with other IOMMU drivers

** All stall faults need response, faults contain more info such as which stage
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Common
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IOMMU API extensions proposed

API Usage

iommu_set_pasid_table Guest owns PASID table. PASID managed by guest.

Iommu_bind/unbind_pasid_for_guest* Bind guest process to host allocated PASID. Host owns 

system wide PASID table

iommu_cache_invalidate Translation cache invalidation passed down from guest

Iommu_report_device_fault Report IOMMU detected device faults outside IOMMU 

subsystem, e.g. page request to be handled by guest.

Iommu_sva_suspend/resume_pasid()* Device switch context while maintain PASID bond

Iommu_page_response() Send page response after page request is handled

Iommu_sva_init/shutdown_device() Prepare device for SVA, e.g. enable PRI, mm_exit 

notifier

Iommu_sva_bind/unbind_device() Create bond between mm, PASID, and device

PASID management APIs Management and helper function for lookup

Iommu_bind_guest_msi Reuse gIOVA doorbell in host

* not yet published
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Summary

• Shared Virtual Addressing(SVA) enables efficient workload submission by 
directly programming CPU virtual addresses on the device

• Intel® VT-d 3.0 specification extends SVA usage together with Intel® Scalable 
I/O Virtualization

• Holistic enhancements are introduced cross multiple kernel/user space 
components, to enable SVA virtualization in KVM

• New kernel APIs are kept neutral to support all kinds of virtual IOMMUs 
(either emulated or para-virtualized)
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Enable SVA in VM (Cont.)
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Enable SVA in VM (Cont.)
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Enable SVA in VM (Cont.)
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Enable SVA in VM (Cont.)
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VT-d Extended Context Mode (Deprecated)
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VT-d Scalable Mode (New)

Key Difference: PASID is a global ID space shared by all 

VMs.

ALL page-table pointers moved to PASID Granular table


