
Changpeng Liu, Ziye Yang

Cloud Storage Software Engineer
Intel Data Center Group

Notices and Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more
complete information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit http://www.intel.com/benchmarks .

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX
instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo
frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and
provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced
data are accurate.

© 2018 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

2

http://www.intel.com/
http://www.intel.com/
http://www.intel.com/go/turbo

• Introduction

• Implementation Details

• Benchmarks

• Future work

3

Agenda

4

vhost target (kernel or userspace)

• Separate process for I/O processing

• vhost protocol for communicating
guest VM parameters

• memory

• number of virtqueues

• virtqueue locations

Hypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

device emulation

virtio back-end drivers

virtqueuevirtqueuevirtqueue

vhostvhost

Accelerate virtio with vhost target

Storage
Performance
Development
Kit

6

Storage Reference Software

• Optimized for latest generation CPUs and SSDs

• Provides Future Proofing

• Extends to Storage Virtualization and Networking

Scalable and Efficient Software Ingredients

• User space, lockless, polled-mode

• Up to millions of IOPS per core

• Minimize average and tail latencies

• Designed for non-volatile media

Available via spdk.io

@SPDKProject

Open Source community

• Open source building blocks (BSD licensed)

• Faster TTM, fewer resources required

SCSI/block

Block Device Layer (bdev)

scsi/bdev Translation

NVMe
bdev
driver

malloc
bdev
driver

Ceph RBD
bdev
driver

Thid party
Bdev
driver

vhost
DPDK

rte_vhost

J
S

O
N

 R
P

C

QEMU

7

SPDK vhost target for accelerating virtio SCSI/BLK

9

Non-Volatile Memory Express
NVMe protocol

 Parallel and high performance interface designed for non-volatile memory
based backend

 Admin commands with Admin queue, slow path

 I/O commands with I/O queues, fast path

 Multiple submission queues and completion queues

 No SCSI middle layer involved in IO submission path compared with SCSI
interface, which can decrease latency for each IO submission

Block devices interface used in Guest VM

 Virtio SCSI/block Controllers

 NVMe Controllers

10

Comparison of Several Known Solutions

Solution

Usage

SPDK
Vhost-SCSI

SPDK
Vhost-BLK

SPDK
Vhost-NVMe

QEMU
Emulated
NVMe

QEMU
VFIO based
NVMe

QEMU
PCI-
Passthrough

Mediated-
NVMe VFIO

Scalable I/O
Virtualization
for NVMe

Guest OS
Interface

VIRITO-SCSI VIRTIO-BLK NVMe NVMe NVMe NVMe NVMe NVMe

Backend
Device sharing

Y Y Y Y N N (*) (*)

Live Migration
support

Y Y Y N N N (*) (*)

QEMU Support Y Y N Y Y Y Y (*)

NVMe Hardware
Required

N N N N Y Y Y Y

Solution

Usage

(*) - the features can be supported or depend on future detailed implementation

11

Issues for hardware assistant solutions

• Hardware assistant accelerator solutions
based on the splicing of IO Queues are
not suitable for NVMe controllers,
because Namespace ID can be used at
any IO Submission Queues.

• Difficult to add live migration support for
hardware assistant accelerators.

• Hard to share one NVMe controller
among different VMs, and advanced
features such as QoS is hard to add.

DWORD 0

NAMESPACE ID

DWORD 15

IO Submission Queue 1 Entry

Same Namespace ID can be used at
any NVMe IO Submission Queues

12

Combine NVMe with Vhost-User

Host Memory

QEMU

Guest VM

Virtio Controller

Shared Guest VM
Memory

SPDK Slave
Target

vhost vhost library

Vhost-
SCSI/BLK

virtqueuevirtqueuevirtqueue

UNIX domain
socket

eventfd

Host Memory

QEMU

Guest VM

NVMe Controller

Shared Guest VM
Memory

SPDK Slave
Target

vhost vhost library

Vhost-NVMe

UNIX domain
socket

eventfd

SQ CQ

13

14

SPDK Vhost Block Diagram

QEMU Guest 1

Vhost User SCSI
Driver

Vhost User BLK
Driver

Vhost User NVMe
Driver

Virtio SCSI
Controller

Guest 2

Virtio BLK
Controller

Guest 3

NVMe
Controller

SPDK Slave Target

Vhost-SCSI Vhost-Blk Vhost-NVMe

Abstracted Block Device Layer

QEMU 2.12 Released

Separate Patch for QEMU

NVMe AIO Ceph RBD iSCSI malloc

QEMU 2.09 Released

15

Socket Messages
Socket Message Protocol

Get/Set Controller Configuration

Admin Pass-through

Set Memory Table

Set Guest Notifier

Set Event Notifier

Admin Commands

Identify/Identify NS

Create/Delete Submission Queue

Create/Delete Completion Queue

Abort

Asynchronous Event Request

Doorbell Buffer Config

Table 1: socket messages Table 2: Mandatory Admin commands
in slave target

Get/Set Controller Configuration and Admin Pass-through messages
can be dropped based on different implementation.

16

Common Socket Messages Benefit from Existing
QEMU Vhost Library

• SET_MEMORY_TABLE: Sets the memory map regions on the slave target so it
can translate the vring addresses

• SET_GUEST_NOTIFIER: Set the event file descriptor for the purpose to
interrupt the Guest when I/O is completed. It can be same with existing
SET_VRING_CALL message

• SET/GET_CONFIG: Set/Get PCI BAR space registers

Proposal: Extend existing QEMU vhost library and make it compatible with non-
virtio devices such as NVMe

17

Create IO Queue

Guest: Create IO Queue

QPRIOCQIDQIDQSIZE PC

PRP1

Guest: Submit to Admin, Write DB

QEMU: Pick up Admin Command

QEMU: Send via Domain Socket

SPDK: Start to Create IO Queue

SPDK: Memory Translation

SQ

18

Data Path Optimization for Commands Submission

MMIO Write for IO Submission

 NVMe 1.3 introduced a new feature: Shadow Doorbell Buffer Config
command which will write to the shadow memory instead of PCI registers

Old Guest Kernel Support

 For those old Linux kernels which don’t support this feature, MMIO writes
will be performed when submitting new commands

SPDK Vhost Target will poll both shadow doorbell buffer memory and IO
submission queue doorbell in PCI BAR0 space.

Performance is improved when shadow doorbell is enabled.

19

NVMe Becomes a Great Para-Virtualized Protocol

SQ 1 Doorbell MMIO write causes VM_EXIT

NVMe 1.3 New Feature: Optional
Admin Command support for
Doorbell Buffer Config, only used
for emulated NVMe controllers

Shadow SQ 1
Doorbell

SQ1

Submit a new IO

Write

20

IO Execution

QEMU

Guest VM

NVMe Controller

SPDK Vhost-NVMe

v
h

o
st

D
P

D
K

 v
h

o
st

NVMe

B
D

E
V

NVMe IO Queue Poller

N
S

1

B
D

E
V

N
S

2 …

…

4. Post CQE
Kernel

kvm

UNIX Domain Socket

SQ CQ

B
D

E
V

N
S

3. Submit bdev IO

21

22

1 VM with 1 NVMe SSD to Get KVM Events

0

100

200

300

400

500

600

IOPS (K)

QEMU-NVME Vhost-SCSI

Vhost-BLK Vhost-NVMe

0

50

100

150

200

250

300

Guest

Usr

Guest

Sys

Host

Usr

Host

Sys

CPU Utilization (%)

0

20

40

60

80

100

120

140

160

180

200

KVM Events (Millions)

System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 128GB, 2667 DDR4, 6 memory Channels; SSD: Intel Optane™ P4800X, FW: E2010324, 375GiB; Bios: HT disabled, Turbo
disabled; OS: Fedora 25, kernel 4.16.0. 1 VM, VM config : 4 vcpu 4GB memory, 4 IO queues; VM OS: Fedora 27, kernel 4.16.5-200, blk-mq enabled; Software: QEMU-2.12.0 with SPDK
Vhost-NVMe driver patch, IO distribution: 1 vhost-cores for SPDK, FIO 3.3, io depth=32, numjobs=4, direct=1, block size=4k,total tested data size=400GiB

23

8 VMs with 4 NVMe SSDs

System Configuration: 2 * Intel Xeon E5 2699v4 @ 2.2GHz; 256GB, 2667 DDR4, 6 memory Channels; SSD: Intel DC P4510, FW: VDV10110, 2TiB; BIOS: HT disabled, Turbo disabled; Host OS: CentOS 7,
kernel 4.16.7. 8 VMs, VM config : 4 vcpu 4GB memory, 4 IO queues; Guest OS: Fedora 27, kernel 4.16.5-200, blk-mq enabled; Software: QEMU-2.12.0 with SPDK Vhost-NVMe driver patch, IO
distribution: 2 vhost-cores for SPDK, FIO 3.3, io depth=128, numjobs=4, direct=1, block size=4k,runtime=300s,ramp_time=60s; SSDs well preconditioned with 2 hours randwrites before randread tests.

0

500

1000

1500

2000

2500

3000

randread

IOPS (K)

Vhost-SCSI Vhost-BLK

Vhost-NVMe

Linux kernel NVMe driver will poll completion queue when submitting a new request, which can
help to decrease interrupt numbers and vm_exit events.

0

500

1000

1500

2000

2500

randread

Latency (us)

Vhost-SCSI Vhost-BLK

Vhost-NVMe

24

Summary

• Native NVMe driver used inside guest kernel, no extra para-virtualization driver
required

• No VM_EXIT for IO submission, user/kernel context switching for IRQ completion

• Zero copy for IO commands

• Benefit from Linux block driver multi-queues feature and Guest NVMe driver

• Fixed 64 Bytes for commands and 16 Bytes for response, more efficient that
virtio-scsi protocol

• Hugetlbfs is required

25

Future Work

• Migration support

• Upstreaming with QEMU driver support

• Container support

26

27

