Private vs. Common Reflections on Cross-Architecture Commonality

Christian Bornträger Maintainer KVM on IBM Z borntraeger@de.ibm.com

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol ([®] or [™]), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries.

The following are trademarks or registered trademarks of other companies.

- Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
- Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Motivation

Maintainer for s390 KVM (IBM Z)

Mostly focused on that platform Also try to keep up2date with kvm in general **I have seen many opportunities for improvement regarding cross-architecture work** Often challenging due to the details Some history and some examples Outlook and Future

History

First Steps

KVM started as Intel only

AMD support drove first factorization

Date: Thu, 19 Oct 2006 15:45:49 +0200 From: Avi Kivity Subject: [PATCH 0/7] KVM: Kernel-based Virtual Machine

The following patchset adds a driver for Intel's hardware virtualization

extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display.

Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected.

In effect, the driver adds a third execution mode to the existing two: we now

have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation.

The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported.

SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on.

Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways:

- cache shadow page tables across page faults

- wait until AMD and Intel release processors with nested page tables

Enabling Other Architectures

	<pre>\$ git log -pgrep "KVM: Portabili</pre>	lity" diffstat -p1			
	drivers/kvm/i8259.c	1			
	drivers/kvm/ioapic.c	16			
	drivers/kvm/iodev.h	63			
Refactoring of code and	drivers/kvm/irq.c	1			
	drivers/kvm/irq.h	32			
of 2007	drivers/kvm/kvm.h	771 +			
Intel: IA64	drivers/kvm/kvm_main.c	2632 +			
IBM POWER \$390	drivers/kvm/lapic.c	97 -			
,,	drivers/kvm/mmu.c	202 +-			
	drivers/kvm/mmu.h	46			
	drivers/kvm/paging_tmpl.h	16			
	drivers/kvm/segment_descriptor.h	12			
	drivers/kvm/svm.c	129 -			
	drivers/kvm/types.h	54			
	drivers/kvm/vmx.c	231 +-			
	drivers/kvm/x86.c	3202 ++++++++++++++++++++++++++++++++++			
	drivers/kvm/x86.h	590 +++++-			
	drivers/kvm/x86_emulate.c	25			
	include/asm-x86/kvm.h	170 ++			
	include/linux/kvm.h	154 -			
	20 files changed, 4421 insertions(+), 4023 deletions(-)				
	<pre>\$ git shortlog -sno-mergesgrep "KVM: Portability"</pre>				
	8 Carsten Otte 53	390			
	1 Christian Ehrhardt 💦 🎽				
	8 Hollis Blanchard pp	opc			
	7 Jerone Young				
	29 Zhang Xiantao iad	a64			

KVM "Everywhere"

Friday, May 2, 2008

Comparing code size

Starting with Linux 2.6.26, kvm supports four different machine architectures: x86, s390 (System Z, or mainframes), ia64 (Intel's Itanium), and embedded PowerPC processors. It is interesting to compare the size of the code supporting each architecture:

arch lines

x86 17442

ia64 8154

s390 2509

ppc 2229

x86 is old and crufty; it supports three instruction sets and four paging modes; its long and successful history means that it needs the most kvm support code. There are two different virtualization extensions that kvm supports on x86 (Intel's VT and AMD's SVM). It is also the architecture that has been supported by kvm for the longest time. It is no surprise that it leads the pack by a significant amount.

ia64 is a newer architecture, but a quite complex one. The mechanism by which is supports virtualization, with a module loaded into the host kernel and a second module loaded into the guest address space, also adds complexity. So it comes in second, though far behind x86.

s390 is older (and probably far cruftier) than x86. But on the other hand, its hardware virtualization support is so mature and complete that a complete hypervisor fits in a fraction of the lines required for x86. Indeed, it will take a while until x86 can support 64-way guests.

ppc 44x, the embedded PowerPC variant targeted by kvm, has a simple software-managed tlb model, and the regular instruction set encoding favored by RISC processors, so it gets by with just a seventh of the amount of code required by x86.

As we add more features, kvm code size will continue to grow slowly, but the relative comparison will no doubt remain valid. And kvm will likely remain the smallest full virtualization solution available. Posted by Avi Kivity at 8:14 AM Labels: code size, ia64, kvm, ppc, s390, x86

http://avikivity.blogspot.com/2008/05/comparing-code-size.html

Components

Structure of a KVM Installation

KVM kernel module

Closest to the hardware \rightarrow does that mean least commonality?

QEMU userspace

Also close to hardware, but uses abstract system call interface \rightarrow worse or better? **Libvirt**

Far away from hardware \rightarrow should be easy, no?

Management stack beyond libvirt

Is there anything platform specific at all?

QEMU, libvirt

QEMU vs Kernel target/*/kvm* vs accel/kvm/ As expected: more commonality Unexpected: similar size across architecture **libvirt** Not even arch-specific folders/files (apart from test)

KVM Kernel Module

Lines of Code (sloccount) 4.18

arch/arm64/kvm/	= 4,792
arch/arm/kvm/	= 2,458
arch/mips/kvm/	= 9,005
arch/s390/kvm/	= 10,984
<pre>arch/powerpc/kvm/</pre>	= 32,651
arch/x86/kvm/	= 41,439
virt/kvm/ = 16,327	(- virt/kvm/arm/ = 11,776) == 4551

arm

x86

kvm 🖉

mips

powerpcs390

KVM Kernel Module

What is common?

Basic IOCTLs VM lifecycle VCPU lifecycle Eventfd/IRQFD handling Debugfs kvm_stat base functions **What is partially common?** RCU handling Wait state Cpu request handling Polling Time accounting Vfio kvm bridge

What is arch specific?

....

Hardware setup Nested virtualization MMU emulation Instruction emulation kvm_stat counters Arch tracepoints Guest state interfaces Basically any hardware specific guest feature enablement

What Kind of Problems? Kernel perspective

Halt Polling

Wait a bit when guest CPU is going idle

Lots of heuristics: Uses hystereris to adapt, check for system load... Does one size fits all?

Problem 1: Local and floating interrupts

If there is an interrupt, consider the poll successful I/O interrupts on s390 are floating (pending for all CPU, first come first serve) Polling was overly optimistic Solution: Add arch callback to filter wakeups **Problem 2: SMT variants**

Solution: Private implementation for power

This patch introduces new halt polling functionality into the kvm_hv kernel module. When a vcore is idle it will poll for some period of time before scheduling itself out.

[..]

There exists generic halt_polling code in virt/kvm_main.c, however on powerpc the polling conditions are different to the generic case. It would be nice if we could just implement an arch specific kvm_check_block() function, but there is still other arch specific things which need to be done for kvm_hv (for example manipulating vcore states) which means that a separate implementation is the best option. So what about cross architecture review?

Reviews

Reviews are often inside the silo

<pre># git log</pre>	arch/arm*/kvm/	grep Reviewed sort uniq -c sort -n -r head -n 5
158	Reviewed-by:	Christoffer Dall <christoffer.dall@linaro.org></christoffer.dall@linaro.org>
85	Reviewed-by:	Marc Zyngier <marc.zyngier@arm.com></marc.zyngier@arm.com>
48	Reviewed-by:	Andrew Jones <drjones@redhat.com></drjones@redhat.com>
29	Reviewed-by:	Will Deacon <will.deacon@arm.com></will.deacon@arm.com>
27	Reviewed-by:	Christoffer Dall <cdall@linaro.org></cdall@linaro.org>
# git log	arch/s390/kvm/	grep Reviewed sort uniq -c sort -n -r head -n 5
116	Reviewed-by:	Cornelia Huck <cornelia.huck@de.ibm.com></cornelia.huck@de.ibm.com>
115	Reviewed-by:	Christian Borntraeger <borntraeger@de.ibm.com></borntraeger@de.ibm.com>
85	Reviewed-by:	David Hildenbrand <dahi@linux.vnet.ibm.com></dahi@linux.vnet.ibm.com>
66	Reviewed-by:	Cornelia Huck <cohuck@redhat.com></cohuck@redhat.com>
50	Reviewed-by:	David Hildenbrand <david@redhat.com></david@redhat.com>
<pre># git log</pre>	arch/powerpc/k	vm/ grep Reviewed sort uniq -c sort -n -r head -n 5
43	Reviewed-by:	David Gibson <david@gibson.dropbear.id.au></david@gibson.dropbear.id.au>
9	Reviewed-by:	Thomas Huth <thuth@redhat.com></thuth@redhat.com>
9	Reviewed-by:	Alexander Graf <agraf@suse.de></agraf@suse.de>
8	Reviewed-by:	David Hildenbrand <david@redhat.com></david@redhat.com>
8	Reviewed-by:	Cornelia Huck <cohuck@redhat.com></cohuck@redhat.com>
<pre># git log</pre>	arch/mips/kvm/	grep Reviewed sort uniq -c sort -n -r head -n 5
13	Reviewed-by:	James Hogan <james.hogan@imgtec.com></james.hogan@imgtec.com>
4	Reviewed-by:	David Hildenbrand <david@redhat.com></david@redhat.com>
4	Reviewed-by:	Cornelia Huck <cohuck@redhat.com></cohuck@redhat.com>
3	Reviewed-by:	Radim Krcmar <rkrcmar@redhat.com></rkrcmar@redhat.com>
2	Reviewed-by:	Paolo Bonzini <pbonzini@redhat.com></pbonzini@redhat.com>

Redhat as the exception (and overall KVM maintainer)

More Cross-Team Education and Review

There have been several talks about educating about architecture specifics

Nested Virtualization on ARM - Christoffer Dall - KVM Forum 2017 To EL2, and Beyond! - Christoffer Dall – KVM Forum 2017 Nesting KVM on s390x - David Hildenbrand – KVM Forum 2016 KVM on System z: The Good, the Bad and the Weird - Cornelia Huck – KVM Forum 2016 QEMU Hotplug Infrastructure and Implementing PCI Hotplug for PowerKVM - Michael Roth – KVM Forum 2015 KVM on IBM POWER8 Machines - Paul Mackerras – KVM Forum 2014 [...]

There are more talks this time

Arm Timers; and Fire! - Christoffer Dall Secure Virtual Machines on Power - Ram Pai & Guerney Hunt Protect Data of Virtual Machines with Memory Encryption on KVM - Kai Huang s390 KVM Memory Management and its Pitfalls - Janosch Frank

•••

Do we need more discussion across architecture teams?

Each architecture has its own pile of oddities

Most HW company have some non-yet-public in-house developments

BOF Session proposal

(see https://www.linux-kvm.org/page/KVM_Forum_2018_BOF)

Successful Changes

Time Accounting

Linux systems have the notion of system time, user time, idle time, softirq time etc

For KVM a guest time was added Support available in sysstat and others

Generic callbacks that handle this across all architectures

Now wrapped in guest_enter/exit_irqoff Does work for all variants of virt cpu accounting **Can we build upon this to influence and enhance others?** No support in top (procps-ng)

Many more successful common parts

Idea sharing Are we good in sharing ideas?

Registers are often shared between guest and host

For example the hypervisor must reload the floating point registers on guest entry/exit **Does it?**

The kernel does not use floating point (most of the time)

First stage

preempt notifier

Light-weight exits (e.g. a virtio notify bound to eventd) have no need of fp reloading

Second stage

On reschedule: save guesta, load hosta \rightarrow schedule \rightarrow save hosta, load hostb \rightarrow schedule \rightarrow save hostb, load hosta \rightarrow save hosta, load guesta

Do the guest/host reloading in ioctl path instead

Now on reschedule: save guesta, load hostb \rightarrow schedule \rightarrow save hostb, load guesta

Last year I talked about that with Rik van Riel

See what happened afterwards

Signed-off-by: Rik van Riel <riel@redhat.com> Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>

Asynchronous Pagefault

IBM Z had asynchronous page fault for a long time in z/VM

KVM on z tried to implement the same on KVM Meanwhile KVM on x has implemented a similar scheme

https://www.linux-kvm.org/images/a/ac/2010-forum-Async-page-faults.pdf Sometimes it needs review feedback to state the obvious

Re: [patch 2/2] [PATCH] kvm-s390: pseudo page fault support

Avi Kivity Thu, 17 Nov 2011 05:18:21 -0800 On 11/17/2011 01:19 PM, Carsten Otte wrote: > This patch adds support for pseudo page faults. The corresponding > interface is implemented according to the documentation in CP > programming services. [...] Is this duplicating virt/kvm/async_pf.c?

Implementation was not fully identical but we were able to factor out things Protected by CONFIG_KVM_ASYNC_PF_SYNC **Interestingly enough there is no sharing in the guest handlers**

Guest Page Hinting

Tell the host, which guest pages are no longer necessary

Implemented for IBM Z with z/VM since ~2005 as CMMA (collaborative memory management assist) Available for KVM on Z since ~2014

Guest has callbacks in arch_alloc_page and arch_free_page

Callbacks use hardware instructions that sets special bits in the host page table

Several possible optimization

On swapout: discard unused pages

On swapin: discard swap slot and use empty zero page

During runtime: drop existing mappings to avoid page out

For x86 under discussion for a while

Similar scheme – guest page hinting

See Guest Free Page Hinting - Nitesh Narayan Lal, Red Hat, Inc., Friday, October 26 • 16:15 – 16:45 Any chance to collaborate? Are the implementations too different?

Interfaces

VIRTIO

Devices are platform specific

SATA, IDE, SCSI, DASD.....

Must be platform specific

Virtio defines fully virtual I/O interface

This can clearly be made platform independent!

First implementation allowed anything (virtio over pigeon carriers)

Unfortunately, no so:

During SPECing things became more specific

A Windows driver was considered important

It was much easier to add a PCI driver than to add a new access method So it was PCI

Now, s390 had no PCI back then...

S390 implemented an lguest like scheme (with queues above main memory) Refactoring started

Later virtio-ccw was added \rightarrow hotplug, hot unplug up to 256k devices etc.

Later virtio-mmio was added

Does that cause problem?

Virtio in Libvirt

Implementation start on one platform Usually PCI Other platforms add thing later CCW,MMIO and previously S390 It becomes obvious that we can refactor [...]

[...]

Future Development

Upcoming Guest User Interfaces

Every architecture has ways of exposing that you run a hypervisor

s390s	s390sys # cat /proc/sysinfo				
VMOO	Name:	s38kvm21			
VM00	Control Program:	KVM/Linux			
VM00	Adjustment:	1000			
VM00	CPUs Total:	2			
VM00	CPUs Configured:	2			
VM00	CPUs Standby:	Θ			
VM00	CPUs Reserved:	Θ			
VM00	Extended Name:	s38kvm210			
VM00	UUID:	ca9eb12e-5a01-4dcf-b952-32db704ec364			

Dmidecode

etc **New patch for /sys/hypervisor** Commonality with XEN

X86 specific Can be fixed to be cross-architecture

[PATCH] KVM: Start populating /sys/hypervisor with KVM entries

Start populating /sys/hypervisor with KVM entries when we're running on KVM. This is to replicate functionality that's available when we're running on Xen.

Let's start with /sys/hypervisor/uuid, which users prefer over /sys/devices/virtual/dmi/id/product_uuid as a way to recognize a virtual machine, since it's also available when running on Xen HVM and on Xen PV and, on top of that doesn't require root privileges by default.

Upcoming Guest User Interfaces

Read Only Enforcement patches V4 [VMM based kernel hardening]

X86 only Any chance of making this generic?

A steady flow of such new interfaces

Summary

Improve inter-architectural discussion

That implies understanding what this is all about **Do not assume that anything is x86** Most people know ARM, but there are others: mips, POWER,s390 **Sometimes it even possible to share interfaces with other hypervisors** XEN guest interfaces, z/VM interfaces, PowerVM? **Sometimes sharing hurts and private implementations are better** Try, but do not go too far **Interested in doing something? See my BoF Session**

THANK YOU! borntraeger@de.ibm.com

What else if I had more time?

Problems when doing common code

Over-Generalization

Sometimes people do the right thing and implement things across architecture

This can go wrong as well

People makes assumptions and base their implementation on those

Example

Postcopy transfers empty pages to the target and marks them as transferred

Second requests for that page are being ignored

Should not fault

Guest page hinting might now throw away this page

And then the guest reuses that page and accesses it Fault!

The host will then resolve the fault.....

Userfaultd is responsible.....

Postcopy thinks: already transmitted – return and do nothing Fault!

Everything was fixed by disabling the problematic cases during postcopy

Something to learn from both sides, sometimes assumptions break Before enabling a feature on a platform

MMU Notifier

How do handle host paging and similar thing

Ideally just allow everything that a normal process has **Provide callbacks for page table primitives**

mm gets a callback structure for primitives: ptep_test_and_clear_young → ptep_clear_young_notify [...]

ptep_test_and_clear_young mmu_notifier_clear_young KVM will register for operations

S390 does not use mmu notifier

Storage keys as a per physical page entity Update needs to be in sync for host and guest Solution: not use mmu_notifier, do the guest part in the base architecture primitives Other challenges: need to implement large page support separately See "s390 KVM Memory Management and its Pitfalls - Janosch Frank, IBM" at this KVM Forum