
Linux is a registered trademark of Linus Torvalds.

KVM Forum 2011

Aug 2011

Anthony Liguori – aliguori@us.ibm.com

IBM Linux Technology Center

QAPI, QCFG, and Code Gen

● QAPI is a framework to move QEMU to the next
level of feature, function, and robustness.

● To fully understand QAPI, we need to
understand what's holding us back...

Good Bones
● We've gained a lot of weight over the years in

the form of features
● Features aren't necessarily bad for you, but we

have a particular appetite for salty, deep fried
features.

● We're growing so fast, and are so popular, that
we simply don't have time to exercise and eat
healthy.

It's catching up with us
● Native KVM Tools is the doctor calling. We're

on the verge of developing software type II
diabetes

● Developing in QEMU “just isn't fun”

● But why?

qemu -hda linux.img -snapshot -net tap -net nic -usbdevice tablet

Block Layer

1) -hda, -hdb, -hdc, ...
2) -drive
3) -blockdev
4) drive_add
5) drive_del
6) blockdev_add
7) blockdev_del
8) query-block

1) bdrv_register
2) bdrv_open
3) whitelisting

Char Layer

1) -chardev OPTS
2) -serial URI
3) -monitor URI
4) -parallel URI
5) query-chardev

1) qemu_chr_open
2) no dynamic registration

Display Layer

Everything is open coded :-(

Network Layer

1) net_client_init1) query-networks
2) -net
3) -netdev
4) netdev_add
5) netdev_del

Monitor Layer

Open coded?

Device Layer

The Fat
● Each subsystem has added its own

infrastructure
● Everyone needs:

– Type serialization
– Inheritance
– Polymorphism
– Object properties
– Object enumeration
– Factory interfaces
– Mechanism to build an object graph

QAPI: Type Serialization
● Decompose serialization into two parts:

1) Marshalers – for a given C type, call a
method in the object for each primitive
member in type.

2) Transport – given a marshaler that can visit
each primitive member in a C type, provide
the translation of primitive types to
arbitrary representations

● Visitor – see qapi/qapi-visit-core.h
● QmpOutputVisitor – see qapi/qmp-output-

visitor.h and qapi/qmp-input-visitor.h

QEMU Object Model
● Standard Object Model supporting:

– Inheritance; single inheritance model +
interfaces

– Polymorphism; class based polymorphism
(no monkey patching)

– Object properties; common base class that
implements properties in terms of Visitors

– Object enumeration; standard enumeration
interface

– Factory interface; standard factory interface
with delayed construction

● Construction properties are just normal
properties

Plugs and Sockets
● Two special property types

– Plug; a reference to a sub-object composed
within the object.

– Socket; a strongly typed pointer to an object

● Together, Plugs and Sockets allow for a
directed acyclic graph

– Can be used to model relationships between
layers and within layers (i.e. busses).

From Here
● QAPI is already merged

– QMP is being converted to use it
● QOM patches are on the ML
● Begin conversion with smaller layers (chardev)

– Initial patches posted
● Build a plan to convert the other layers

including the Device Layer
– Can we incrementally morph qdev into a

QOM type system?

QEMU 2.0
● Given a common infrastructure, we would have

the following:
– All backends and devices were created and

manipulated by a set of about 6 commands
– All object creation and manipulation could be

done through QMP
– Command line arguments are just QMP

invocations (mostly just calls to above 6
commands)

– Device model and backends are fully
introspectable

– Tree is fully modular (and type can be
removed with no code change)

QEMU 2.0
● Current QMP and Command Line interface is

purely legacy
● We could either (1) deprecate it and remove it

in 2.0 or (2) move it entirely to a separate tool
potentially written in a HIL

● Significant simplification of QEMU
● There will always be command line options or

monitor commands that don't go through QOM,
but it should be the exception.

Questions
● Questions, comments, flames?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

