
1

WinKVM: Windows Kernel-
based Virtual Machine

Kazushi Takahashi, Koichi Sasada

University of Tokyo

2

About me

� Name:
� ���� ��

� Kazushi Takahashi

� My research area:
� System software, operating system and virtual

machine technology

� Interested in Linux kernel hacking, distributed
system and parallel programming

� Twitter: ddk50

� Blog: http://d.hatena.ne.jp/ddk50/

3

Agenda

� We have implemented WinKVM
� WinKVM is a port of KVM(-17) to Microsoft Windows.

� Main point of today�s talk: �How we developed
WinKVM�
� KVM is implemented as Linux device driver
� Porting �kvm.ko and intel-kvm.ko� to Windows drivers
� Developing an emulation layer to run Linux drivers on

Windows
� This emulation layer translates Linux kernel functions

into Windows kernel APIs

� Why we develop WinKVM
� To provide a VMM that supports both Windows and Linux
� To search for the new way of KVM usage

4

Overview of Our Method

We implemented a linux emulation layer
� To reduce implementation costs

� To enable any version of KVM to run

Kernel-mode-layer User-mode-layer

QEMU

System call

Signal
VMM

Users

libkvmKVM

Linux Kernel

Windows Kernel

Linux emulation layer

WinKVM

KVM drivers DO NOT

work on Windows because

their ABIs are different

Developing an
emulation layer to

emulate Linux kernel
functions

Add modifications
to connect QEMU

and WinKVM

Link the emulation
layer and KVM

Now, We can get WinKVM!

5

Examples of Translated APIs

Linux Kernel
Functions

Windows Kernel Functions used to
emulate the function

kmalloc()

kfree()

ExAllocatePoolWithTag()

ExFreePoolWithTag()

mutex_init()

mutex_lock()

mutex_unlock()

mutex_trylock()

ExInitializeFastMutex()

ExAcquireFastMutex()

ExReleaseFastMutex()

ExTryToAcquireFastMutex()

alloc_page()

free_page()

ExAllocatePoolWithTag()

ExFreePoolWithTag()

__va()

__pa()

MmGetVirtualForPhysical()

MmGetPhysicalAddress()

Most of Linux functions have corresponding
windows kernel functions

6

Two Technical Problems

1. Difference in binary formats (compilers):
� How to link our emulation layer and KVM drivers

� KVM source code (inline-asm) depends on GCC

� Windows driver developers have to use Visual C++

� Visual C++ CANNOT compile KVM source code

1. Difference in memory architectures:
� KVM driver and QEMU share guest OS memory region

� Both OSs support memory sharing between kernel and
user memory space

� Difficulties in emulating Linux memory interfaces by
Windows kernel

� The fault (nopage) handler, which is used by KVM is
not supported by Windows.

7

How to handle the difference in
binary formats

Linux kernel source
(version 2.6.24-24)

KVM source code
(use of KVM-17)

Our Emulation layer
source code

Pick up some source
code. i.e. linked list

implementation

Compile KVM
using Cygwin gcc

Visual C++
With WDK

We get compiled KVM
as COFF binary

*.obj

Leave the �portable�-
potion of the Linux

kernel code
unmodified to reuse

Finally, We get
winkvm.sys!!

1st step

2nd step

3rd step

Link the KVM objects and
our emulation layer

8

How to handle the differences
in memory architectures (1/2)

� Problem:
� The fault handler in Linux is difficult to

emulate by Windows kernel functions

� Solution:
� Modify KVM source code to avoid use of

the fault handler

� Only 1-line modification

9

How to handle the differences
in memory architectures (2/2)

� The mechanism of this modification

1. Before starting KVM emulation, our emulation
layer construct memory mapping regions
between kernel and user-space. The layer
has already mapped GPA to HVA

2. When KVM itself also tries to map GPA to
HVA, our patch overwrites the mapping with
our emulation layer mapping

3. Never call the fault (nopage) handler in KVM

Latest KVM may not need this modification

10

DEMO
Does our method work well?

In this demo, we execute on Linux
kernel 2.6.20 attached to QEMU, and

execute some applications

11

12

Future Work

� Overcome guest memory limitation
� Max 300MB guest memory from 2Gbyte

physical memory
� We are able to solve this problem

� Modify QEMU to gather scattered memory chunks as
a single guest memory space

� Add new functions to the emulation layer
� Implement SMP functions such as

smp_call_function()
� Catch up the latest version of KVM

� Nested paged KVM
� PCI Pass-through

� Debug :-(

13

Summary

� We have implemented WinKVM
� A port of KVM(-17) to Microsoft Windows

� Main point of today�s talk: �How we
developed WinKVM�

� We implemented an emulation layer to
run Linux drivers on Windows

� We developed WinKVM using this
emulation layer

14

Thank you for your attention!

Have a look at WinKVM repository in GitHub

http://github.com/ddk50/

