

A Quest Against Time

● Why timekeeping is hard
● What we can do without guest help
● What we can do with guest help

TIME IS HARD

TIME IS HARD

● Not this hard...

TIME IS HARD

● Not this hard...
● It's worse

Already hard on bare metalAlready hard on bare metal

Highest resolution clock is very
problematic

Reaching agreement is hard
(inter-cpu drift)

Reaching agreement is hard
(inter-socket drift)

Reaching agreement is hard
(thermal effects)

Reaching agreement is hard
(super-scalar execution)

Reaching agreement is hard
(hotplug CPUs)

Under virtualization, basic
assumptions can break

Every measurement is an
observation...

And every observation must be
consistent....

Not just with itself, but with other
clock interrupts

PIT LINE

And there are many of these

PIT LINE

HPET LINE

APIC LINE

Interrupts delivered, guest is out

Delay to resuming guest

On-time delivery is a hard target to hit,
especially with multiple guests

How will guest deal with lateness?

How will guest deal with lateness?

Interrupt Re-injection

Requires a lot of CPU

Ideally, not rely on interrupts

● Read clock timestamp directly (modern linux
clocksources)

Guest Based Compensation

● Read clock timestamp directly (modern linux
clocksources) => and then figure out how many
ticks we should account.

● Requires accurate TSC

Hypervisor tells time

Adjust locally with tsc

Adjust locally with tsc

The picture

Must be done carefully
TSC and host clock may run at different resolutions

TSC has issues
Even if everything works ok

Recalibration has serious issues

CPU 0 CPU 1Δt...

As does SMP

CPU 0

CPU 1

Perfect synchronization
still has issues

CPU 0 CPU 1

Summary
● Time is a hard problem
● Interrupt based timekeeping doesn't scale
● Perfect synchronization is rare
● Backwards jumps can arise in numerous ways

TSC / PIT / RTC clock

● Use re-injection for RTC (Windows)
● Use guest compensation for PIT (Older Linux)
● Use TSC stabilization techniques
● TSC frequency compensation
● TSC trapping for SMP (unstable)

KVM clock

● No interrupt re-injection
● Try for perfect synchronization where possible
● Use TSC stabilization techniques
● No frequency compensation
● No TSC trapping (userspace TSC imperfect)
● RDTSCP

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

