
The Shadowy Depths
of the

KVM MMU

KVM Forum 2007



Agenda

● A quick recap of x86 paging
● Shadow paging in general
● Goals for the KVM MMU
● The gory details



Paging on x86

● Function: translate virtual 
addresses to physical 
addresses

● Looks a bit like a radix tree
● Read and modified by 

hardware
● Cached by on-chip structures 

(the Translation Look-aside 
Buffer, or TLB)

Page
directory

Page
table

Page
table

Page
table



What does “a bit like a tree” 
mean?

● Okay, it isn't a tree
– there are several trees in 

existence simultaneously 
(processes)

– depth is not even (large pages)
– multiple edges can point to the 

same leaves (page sharing, 
aliasing)

– some nodes can be shared 
(shared kernel address space)

– height can change (pae, long 
mode)

– it may not exist (real mode)



Cache control

● invlpg
– “this virtual address in the current address space is 

invalid”
● mov cr3

– “everything you know is wrong”

● Too coarse!



Quick Intro to Shadow Paging

● Page tables/TLB specify guest virtual to guest 
physical mapping

● Hypervisor wants to translate guest physical 
addresses to host physical addresses

● Current processors can't do the additional 
translation in hardware

The hypervisor computes the guest virtual to 
host physical mapping on the fly and stores it in 
a new set of page tables



Shadow paging challenges

● Handle all the complexities of x86 paging
● Keep the shadow page tables in sync with the 

guest page tables
● Do it fast



Goals for the KVM MMU

● Correctness
– no assumptions about guest behavior

● Performance
● Acceptable worst case behavior

– no nasty fallbacks if heuristics fail
● Code maintainability



Write protection

● We can't rely on invlpg and mov cr3 to tell us 
when we need to invalidate shadow page table 
entries

● So, we track guest page table modifications 
ourselves:
– every shadowed guest page is write protected 

against guest modifications
– if the guest tries to modify, we trap and emulate the 

modifying instruction
– because we know the address, we can clear the 

associated shadow page table entry(ies)



Reverse mapping

● Write protection is not so easy
– the same page may be already mapped by the 

guest in multiple locations
● So, we track writable mappings of every guest 

page
– linked list hanging off page->private
– each entry is a shadow pte
– special case for one writable mapping

● When we shadow a guest page, we iterate over 
the reverse map and remove write access

● When adding write permission to a page, we 
check whether the page has a shadow



The shadow hash

● We sometimes need to find the shadows of a 
given page
– when linking it into the shadow page table tree
– to check if it can be made writable

● So we use the #1 data structure in computing: 
the hash table

● Key consists of
– guest page frame number
– this shadow's role in the universe

● We can have multiple shadow pages for a 
single guest page – one for each role!



Shadow page descriptor

● Every shadow page table has a descriptor
● The descriptor is reachable via page->private

– Given a page table entry pointer, we can find out 
things about the page

● Contents
– LRU link
– Hash table link
– Guest page number
– Role
– Slot bitmap
– Parent pte list
– Root ref count



Shadow roles

● A word with many bitfields
– what paging mode is in effect for this shadow 

(0/2/3/4)
– what level in the paging hierarchy this page 

occupies (needed for cyclic paging structures)
– inherited access rights
– “metaphysical” bit

● used for shadow pages which aren't directly related to 
guest pages: large page shadows and real mode shadows

● metaphysical pages don't participate in some lookups
– the quadrant

● Roles allow multiple operating modes to coexist



Quadrants

● The KVM MMU always uses 64-bit shadow 
page table entries
– implies 512 page table entries per page
– Level 1 page table maps 2MB
– Level 2 page table maps 1GB

● But.
– Guest can use 32-bit page table entries
– Level 1 page table maps 4MB
– Level 2 page table maps 4GB

● We need 2 or 4 shadows per guest page table!



Quadrants (cont'd)

L2 page table
(0-4GB)

L2 shadow (Q=0)
0-1GB

L2 shadow (Q=1)
1-2GB

L2 shadow (Q=3)
3-4GB

Shadows for different quadrants are completely independent



All those lists...

● rmap: from guest page to shadow ptes that map 
it

● Shadow hash: from guest page to its shadow
● Parent pte chain: from shaow page to upper-

level shadow page
● Shadow pte: from shadow page to lower-level 

shadow page
● LRU: all active shadow pages



Dirty page tracking

● Maintains a bitmap of dirtied pages
● Used for framebuffer acceleration, live migration
● Activated per slot

● When mapping a page as writable, we mark it it 
as dirty

● Also, mark the shadow page table as having a 
pte mapping pages from that slot

● Later, when write protecting the slow, we scan 
all shadow pages, skipping those that don't map 
pages from the slot



SMP considerations

● All shadow code protected by a single lock
● When reducing permissions in a shadow pte 

(write->readonly, present->not present), we 
cause TLBs on all cpus that run a vcpu to be 
flushed

● One day, we may track which vcpus have 
accessed the shadow page



A day in the life of a page fault

● Page fault is intercepted by hardware
● Page fault handler invoked, calls guest page 

table walker
– If it's a guest page fault, we're done
– Walker remembers the guest page tables accessed

● Walk the shadow page table, instantiating page 
tables as necessary
– Can involve an rmap walk and write protecting the 

guest page table
● Instantiate the new shadow pte



Page table updates

● The guest updates its page tables from time to 
time
– Like, after every guest page fault

● We already need to zap the shadow pte on 
update, but in certain cases, we can do better
– Instantiate the new pte immediately
– Saves a vmexit



Flood protection

● The guest may issue a lot of writes to a guest 
page table (fork())

● This results in a lot of emulations
● Detect this, and unshadow the page



Shadow teardown

● If a guest page table is no longer a page table, 
write protection slows things down

● How to detect?
– Misaligned writes
– User-mode writes
– Floods


