

Qumranet

KVM Live Migration

Uri Lublin, Qumranet Anthony Liguori, IBM

Agenda

- Introduction
- Algorithm
- Migration Protocols
- How to add migration support for new devices
- Using it
- Summary/Merits compared to other hypervisors
- Future Work

Introduction

- Live Migration, A valuable feature of any hypervisor
 - Almost unnoticeable guest downtime
 - Load Balancing, Maintenance, Hardware Upgrades
 Software Upgrades
- Guest is not involved
- Capable of tunneling VM State through an external program
- Short and Simple
- Easy to Enhance
- Hardware (almost) independence

- 1. Setup
- 2. Transfer Memory

- 1. Setup
- 2. Transfer Memory
 - 3. Stop the VM

- 1. Setup
- 2. Transfer Memory
 - 3. Stop the VM
 - 4. Transfer State

- 1. Setup
- 2. Transfer Memory
 - 3. Stop the VM
 - 4. Transfer State
 - 5. Continue VM

- 1. Migration Request arrives (migrate VM from A to B)
 - Spawn external command (If applicable)
 - Connect (if applicable) and send header
 - Allocate resources + Setup

- 1. Migration Request arrives
- 2. Transfer Memory
 - First transfer all memory pages (first iteration)
 - For every next iteration I transfer all dirty pages of iteration i-1
 - Until convergence

- 1. Migration Request arrives
- 2. Transfer Memory
- 3. Stop the VM

- 1. Migration Request arrives
- 2. Transfer Memory
- 3. Stop the VM
- 4. Transfer VM State
 - Each device "transfer" its own state
 - Dirty pages (from the last iteration) included

- 1. Migration Request arrives
- 2. Transfer Memory
- 3. Stop the VM
- 4. Transfer VM State
- 5. Continue the VM
 - On remote (B) if migration was successful
 - Send (broadcast) an Ethernet packet to announce the new location
 - On local host (A) if migration failed

Memory Transfer

Requires support for dirty memory page logging

Homogeneous page optimization

Rapidly written pages / Writeable Working Set

Dynamic Bandwidth Limitation

Dirty Page Logging

Qemu

- One byte per page supports up to 8 different dirty types
- Devices that write directly into guest memory must update the dirty-byte-map

KVM

- One bit per page
- Pages are mapped RO to intercept first-write
- Enabled/Disabled when migration begins/ends
- Merged with Qemu's dirty log before every memory transfer iteration

State Save/Load

- Qemu devices register save/load functions
- Functions are called upon VM save/load/migrate
- Versioning/Backwards-Compatibility
- KVM State (register values) is synchronized with qemu as part of cpu and other devices' statefunctions

Memory Transfer Convergence Rules

- Transitions the algorithm from live phase to offline phase, according to the following rules:
- Convergence: N1=50 dirty pages (or less) left
- No Progress: N2=2 iterations where the number of transferred memory pages is smaller than the number of pages that got dirty.

Hard limit: N3 = 30 iterations passed

Convergence example: fc6 running httpd

Number of pages sent per iteration during fc6-httpd live migration

WWS example: fc6 running httpd

Histogram: Number of times a pages was sent during fc6-httpd live migration

End Of Migration Protocol (for tcp://)

- Goal: prevent a case where a guest continues to run on both hosts
- Algorithm:
 - A Transfers state to B and waits for ACK
 - B receives state, sends ACK and waits for GO
 - A receives ACK, and sends GO
 - B receives GO and continues
 - Upon any timeout (lost messages), migration fails
- Worst Case: Go was lost
 - VM does not run (on any host)
 - A stops, B exits
 - Third party (management) intervention required

Migration Support for new devices

- If the new device writes directly to guest memory update byte-map-log
- If some syncing needs to be done before/after state transfer, register to get VM stop/cont events

- Register save/load state function
- Don't forget versioning (support for backwards compatibility)

Migration Support for PV drivers

- PV host-side must
 - Save/Load its state
 - Make sure guest state is valid on remote host
- Use Non-Locking guest-host synchronization mechanism.
 - Such as rings.
 - Guest must never be stopped while holding a guest-host shared lock.
- Keep hypercall-calling a single command

Qemu monitor commands and cmd line

- (qemu) migrate [-d] <migration_protocol:params>
 - On remote <kvm-cmd-line> –incoming <protocol:params>
 - /usr/bin/kvm –m 512 –hda /images/a.img –incoming stdio
- (qemu) migrate_set_speed <bytes_per_second>
- (qemu) migrate_cancel
- (qemu) info migration

Migration Protocols – Use Cases

- Using TCP sockets
 - Migrate tcp://remote:port
 - -incoming tcp://0:port
- Built In ssh support
 - Migrate ssh://remote
- Save image to file
 - Migrate "exec: dd of=STATEFILE"
 - -incoming file://STATEFILE
- Compress using gzip (bzip2)
 - Migrate "exec: gzip –c > FILE.gz"
- Encrypt using gpg into a file or to remote
 - Migrate "exec: gpg –q –e –r KEY –o FILE.gpg"
 - Migrate "exec: gpg —q —e —r KEY | nc remote port"
 - Nc –I port | gpg –q –d –r KEY | <kvm-cmd>

Merits compared to other hypervisors

- Short and Simple
- Built in security using ssh
- Guest is not involved
- Hardware independence
- Migration of stopped guests
- Tunneling/Flexibility/Extensibility
- Compression/Encryption
- Backwards Compatibility
- Upon Failure, guest continues to run on source host.
- Open

Future Work

- Support for more migration protocols
 - Live Checkpoints, compression, encryption, file
 - Partial support for unknown migration protocols
- WWS optimization
- Fine tune parameters
- Deal with device assignment/direct access.
- Migrate to a remote location
- Migrate disk as together with state.
- Support for new features of kvm (e.g. pass through)

Thank You ©